In recent years, there has been an effort to develop new technologies for measuring gene expression and sequence information from thousands of individual cells. Large data sets that were obtained using these 'single cell' technologies have allowed scientists to address fundamental questions in biomedicine ranging from stems cells and development to cancer and immunology. Here, we provide a brief review of recent developments in single-cell technology. Our intention is to provide a quick background for newcomers to the field as well as a deeper description of some of the leading technologies to date.
The GnRH receptor (GnRHR) mediates the pituitary functions of GnRH, as well as its anti-proliferative effects in sex hormone-dependent cancer cells. Here we compare the signaling of GnRHR in pituitary gonadotrope cell lines vs. prostate cancer cell lines. We first noticed that the expression level of PKCα, PKCβII and PKCε is much higher in αT3-1 and LβT2 gonadotrope cell lines vs. LNCaP and DU-145 cell lines, while the opposite is seen for PKCδ. Activation of PKCα, PKCβII and PKCε by GnRH is relatively transient in αT3-1 and LβT2 gonadotrope cell lines and more prolonged in LNCaP and DU-145 cell lines. On the otherhand, the activation and re-distribution of the above PKCs by PMA was similar for both gonadotrope cell lines and prostate cancer cell lines. Activation of ERK1/2 by GnRH and PMA was robust in the gonadotrope cell lines, with a smaller effect observed in the prostate cancer cell lines. The Ca2+ ionophore A23187 stimulated ERK1/2 in gonadotrope cell lines but not in prostate cancer cell lines. GnRH, PMA and A23187 stimulated JNK activity in gonadotrope cell lines, with a more sustained effect in prostate cancer cell lines. Sustained activation of p38 was observed for PMA and A23187 in Du-145 cells, while p38 activation by GnRH, PMA and A23187 in LβT2 cells was transient. Thus, differential expression and re-distribution of PKCs by GnRH and the transient vs. the more sustained nature of the activation of the PKC-MAPK cascade by GnRH in gonadotrope cell lines vs. prostate cancer cell lines respectively, may provide the mechanistic basis for the cell context-dependent differential biological responses observed in GnRH interaction with pituitary gonadotropes vs. prostate cancer cells.
During mammalian kidney development, nephron progenitors undergo a mesenchymal to epithelial transition and eventually differentiate into the various tubular segments of the nephron. Recently, the different cell types in the developing kidney were characterized using the Dropseq single cell RNA sequencing technology for measuring gene expression from thousands of individual cells. However, many genes can also be alternatively spliced and this creates an additional layer of heterogeneity. We therefore used full transcript length single-cell RNA sequencing to obtain the transcriptomes of 544 individual cells from mouse embryonic kidneys. We first used gene expression levels to identify each cell type. Then, we comprehensively characterized the splice isoform switching that occurs during the transition between mesenchymal and epithelial cellular states and identified several putative splicing regulators, including the genes Esrp1/2 and Rbfox1/2. We anticipate that these results will improve our understanding of the molecular mechanisms involved in kidney development.
Introduction: Gestational vascular complications (GVCs), including gestational hypertension and preeclampsia, are leading causes of maternal morbidity and mortality. Elevated levels of extracellular vesicles (EVs), in GVC have been linked to vascular injury. This study aims to characterize placental and circulating EV miRNA in GVCs, and explores the involvement of EV-miRNA in GVC, and whether they may be used to distinguish between placental and maternal pathologies.Methods: Blood samples were obtained from 15 non-pregnant (NP), 18 healthy-pregnant (HP), and 23 women with GVC during the third trimester. Placental sections were obtained after caesarian section. Platelet-poor-plasma (PPP) and EV pellets were characterized: EV size/concentration, protein content and miRNA expression were measured by nanoparticle tracking analysis, western blot, nano-string technology and RT-PCR. The effects of EVs on trophoblasts and EC miRNA expression were evaluated.Results: Higher EVs concentrations were observed in HP-PPP and GVC-PPP (p < 0.0001) compared to the NP-PPP. The concentration of large EVs (>100 nm) was higher in PPP and EV pellets of HP and GVC compared to the NP group. EV pellets of pregnant women demonstrated lower expression of exosomal markers CD63/CD81 compared to NP-EVs. GVC-EVs expressed more human placental lactogen (hPL) hormone than HP-EVs, reflecting their placental origin. Screening of miRNAs in EV pellets and in PPP identified certain miRNAs that were highly expressed only in EVs pellets of the HP (13%) and GVC groups (15%), but not in the NP group. Differences were detected in the expression of hsa-miR-16-5p, hsa-miR-210, and hsa-miR-29b-3p. The expression of hsa-miR-16-5p and hsa-miR-210 was low in EV pellets obtained from NP, higher in HP-EVs, and significantly lower in GVC-EVs. Except for hsa-miR-29b-3p, which was upregulated in GVC, no significant differences were found in the levels of other miRNAs in placental sections. Exposure to GVC-EVs resulted in higher expression of hsa-miR-29b-3p compared to cells exposed to HP-EVs in villous trophoblasts, but not in EC.Conclusion: Expression of hsa-miR-16-5p and hsa-miR-210 reflects maternal pathophysiological status, while hsa-miR-29b-3p reflects placental status. These findings suggest that EV-miRNA are involved in GVC, and that they may be used to distinguish between pathologies of placental and maternal origins in preeclampsia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.