Purpose: XIAP [X-linked inhibitor of apoptosis (IAP) protein] is the best characterized mammalian caspase inhibitor. XIAP is frequently overexpressed in a variety of human tumors, and genetic inactivation of XIAP in mice protects against lymphoma. Therefore, XIAP is an attractive target for anticancer therapy. IAP antagonists based on a conserved IAP-binding motif (IBM), often referred to as "Smac-mimetics," are currently being evaluated for cancer therapy in the clinic. ARTS (Sept4_i2) is a mitochondrial proapoptotic protein which promotes apoptosis by directly binding and inhibiting XIAP via a mechanism that is distinct from all other known IAP antagonists. Here, we investigated the ability of peptides derived from ARTS to antagonize XIAP and promote apoptosis in cancer cell lines.Experimental Design: The ability of synthetic peptides, derived from the C-terminus of ARTS, to bind to XIAP, stimulate XIAP degradation, and induce apoptosis was examined. We compared the response of several cancer cell lines to different ARTS-derived peptides. Pull-down assays were used to examine binding to XIAP, and apoptosis was evaluated using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, caspase activation, and Western blot analyses of caspase substrates.Results: The C-terminus of ARTS contains a unique sequence, termed ARTS-IBM (AIBM), which is important for binding to XIAP and cell killing. AIBM peptides can bind to XIAP-BIR3, penetrate cancer cells, reduce XIAP levels, and promote apoptosis.Conclusions: Short synthetic peptides derived from the C-terminus of ARTS are sufficient for binding to XIAP and can induce apoptosis in cancer cells. These results provide proof-of-concept for the feasibility of developing ARTS-based anticancer therapeutics.
M. tuberculosis (Mtb), which causes tuberculosis disease, continues to be a major global health threat. Correct identification of valid drug targets is important for the development of novel therapeutics that would shorten the current 6–9 month treatment regimen and target resistant bacteria. Methionine aminopeptidases (MetAP), which remove the N-terminal methionine from newly synthesized proteins, are essential in all life forms (eukaryotes and prokaryotes). The MetAPs contribute to the cotranslational control of proteins as they determine their half life (N-terminal end rule) and facilitate further modifications such as acetylation and others. Mtb (and M. bovis) possess two MetAP isoforms, MetAP1a and MetAP1c, encoded by the mapA and mapB genes, respectively. Conflicting evidence was reported in the literature on which of the two variants is essential. To resolve this question, we performed a targeted genetic deletion of each of these two genes. We show that a deletion mutant of mapA is viable with only a weak growth defect. In contrast, we provide two lines of genetic evidence that mapB is indispensable. Furthermore, construction of double-deletion mutants as well as the introduction of point mutations into mapB resulting in proteins with partial activity showed partial, but not full, redundancy between mapB and mapA. We propose that it is MetAP1c (mapB) that is essentially required for mycobacteria and discuss potential reasons for its vitality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.