Beneficial biofilms may confer effective adaptation to food matrices that assist bacteria in enduring hostile environmental conditions. The matrices, for instance, dietary fibres of various food products, might serve as a natural scaffold for bacterial cells to adhere and grow as biofilms. Here, we report on a unique interaction of Bacillus subtilis cells with the resistant starch fibresof chickpea milk (CPM), herein CPM fibres, along with the production of a reddishpink pigment. Genetic analysis identified the pigment as pulcherrimin, and also revealed the involvement of Spo0A/SinI pathway in modulating the observed phenotypes. Besides, through successful colonization of the CPM fibres, the wild-type cells of B. subtilis displayed enhanced survivability and resilience to environmental stress, such as heat and in vitro gastrointestinal treatments. In total, we infer that the biofilm formation on CPM fibres is an adaptation response of B. subtilis for strategic survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.