Bluegill sunfish use intermittent propulsion during volitional swimming. The function of this propulsive mode during routine swimming has not been well quantified. At low speeds, propulsive cycle frequencies and amplitudes were constant, and average speed and power output were controlled by modulating coasting duration. This fixed-gear gait may accommodate muscle level constraints on power production. At higher speeds bluegills switched to a mixed power-modulation strategy, increasing speed and power through increased propulsive cycle frequency and reduced coasting time.
The drag coefficient bluegill sunfish Lepomis macrochirus was estimated from coasting deceleration as (mean ± SD) 0.0154 ± 0.0070 at a Reynolds number of 41,000 ± 14,000. This was within the coasting range in other species and lower than values obtained from dead drag measurements in this species and others. Low momentum losses during coasting may allow its use during intermittent propulsion to modulate power output or maximize energy economy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.