Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic inherited renal cystic disease that occurs in different races worldwide. It is characterized by the development of a multitude of renal cysts, which leads to massive enlargement of the kidney and often to renal failure in adulthood. ADPKD is caused by a mutation in PKD1 or
PKD2 genes encoding the proteins polycystin‐1 and polycystin‐2, respectively. Recent studies showed that cyst formation and growth result from deregulation of multiple cellular pathways like proliferation, apoptosis, metabolic processes, cell polarity, and immune defense. In ADPKD, intracellular cyclic adenosine monophosphate (cAMP) promotes cyst enlargement by stimulating cell proliferation and transepithelial fluid secretion. Several interventions affecting many of these defective signaling pathways have been effective in animal models and some are currently being tested in clinical trials. Moreover, the stem cell therapy can improve nephropathies and according to studies were done in this field, can be considered as a hopeful therapeutic approach in future for PKD. This study provides an in‐depth review of the relevant molecular pathways associated with the pathogenesis of ADPKD and their implications in development of potential therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.