In this paper we study how hyperbolic and nonhyperbolic regions in the neighborhood of a resonant island perform an important role allowing or forbidding stickiness phenomenon around islands in conservative systems. The vicinity of the island is composed of nonhyperbolic areas that almost prevent the trajectory to visit the island edge. For some specific parameters tiny channels are embedded in the nonhyperbolic area that are associated to hyperbolic fixed points localized in the neighborhood of the islands. Such channels allow the trajectory to be injected in the inner portion of the vicinity. When the trajectory crosses the barrier imposed by the nonhyperbolic regions, it spends a long time abandoning the vicinity of the island, since the barrier also prevents the trajectory from escaping from the neighborhood of the island. In this scenario the nonhyperbolic structures are responsible for the stickiness phenomena and, more than that, the strength of the sticky effect. We show that those properties of the phase space allow us to manipulate the existence of extreme events (and the transport associated to it) responsible for the nonequilibrium fluctuation of the system. In fact we demonstrate that by monitoring very small portions of the phase space (namely, ≈1×10(-5)% of it) it is possible to generate a completely diffusive system eliminating long-time recurrences that result from the stickiness phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.