Neural Networks are known to be sensitive to initialisation. The explanation methods that rely on neural networks are not robust since they can have variations in their explanations when the model is initialized and trained with different random seeds. The sensitivity to model initialisation is not desirable in many safety critical applications such as disease diagnosis in healthcare, in which the explainability might have a significant impact in helping decision making. In this work, we introduce a novel method based on parameter averaging for robust explainability in tabular data setting, referred as XTab. We first initialize and train multiple instances of a shallow network (referred as local masks) with different random seeds for a downstream task. We then obtain a global mask model by averaging the parameters of local masks and show that the global model uses the majority rule to rank features based on their relative importance across all local models. We conduct extensive experiments on a variety of real and synthetic datasets, demonstrating that the proposed method can be used for feature selection as well as to obtain the global feature importance that are not sensitive to sub-optimal model initialisation.
Self-supervised learning has been shown to be very effective in learning useful representations, and yet much of the success is achieved in data types such as images, audio, and text. The success is mainly enabled by taking advantage of spatial, temporal, or semantic structure in the data through augmentation. However, such structure may not exist in tabular datasets commonly used in fields such as healthcare, making it difficult to design an effective augmentation method, and hindering a similar progress in tabular data setting. In this paper, we introduce a new framework, Subsetting features of Tabular data (SubTab), that turns the task of learning from tabular data into a multi-view representation learning problem by dividing the input features to multiple subsets. We argue that reconstructing the data from the subset of its features rather than its corrupted version in an autoencoder setting can better capture its underlying latent representation. In this framework, the joint representation can be expressed as the aggregate of latent variables of the subsets at test time, which we refer to as collaborative inference. Our experiments show that the SubTab achieves the state of the art (SOTA) performance of 98.31% on MNIST in tabular setting, on par with CNN-based SOTA models, and surpasses existing baselines on three other real-world datasets by a significant margin.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.