The yellow fever virus (YFV) epidemic in Brazil is the largest in decades. The recent discovery of YFV in Brazilian Aedes species mosquitos highlights a need to monitor the risk of reestablishment of urban YFV transmission in the Americas. We use a suite of epidemiological, spatial, and genomic approaches to characterize YFV transmission. We show that the age and sex distribution of human cases is characteristic of sylvatic transmission. Analysis of YFV cases combined with genomes generated locally reveals an early phase of sylvatic YFV transmission and spatial expansion toward previously YFV-free areas, followed by a rise in viral spillover to humans in late 2016. Our results establish a framework for monitoring YFV transmission in real time that will contribute to a global strategy to eliminate future YFV epidemics.
The yellow fever virus (YFV) epidemic that began in Dec 2016 in Brazil is the largest in decades. The recent discovery of YFV in Brazilian Aedes sp. vectors highlights the urgent need to monitor the risk of re-establishment of domestic YFV transmission in the Americas. We use a suite of epidemiological, spatial and genomic approaches to characterize YFV transmission. We show that the age-and sex-distribution of human cases in Brazil is characteristic of sylvatic transmission. Analysis of YFV cases combined with genomes generated locally using a new protocol reveals an early phase of sylvatic YFV transmission restricted to Minas Gerais, followed in late 2016 by a rise in viral spillover to humans, and the southwards spatial expansion of the epidemic towards previously YFV-free areas. Our results establish a framework for monitoring YFV transmission in real-time, contributing to the global strategy of eliminating future yellow fever epidemics.
BackgroundYellow fever (YF) is endemic in the Brazilian Amazon Basin, and sporadic outbreaks take place outside the endemic area in Brazil. Since 2016, YF epidemics have been occurring in Southeast Brazil, with more than 1,900 human cases and more than 1,600 epizooties of non-human primates (NHPs) reported until April 2018. Previous studies have demonstrated that Yellow fever virus (YFV) causing outbreaks in 2017 formed a monophyletic group.Methodology/Principal findingsAiming to decipher the origin of the YFV responsible for the recent epidemics, we obtained nucleotide sequences of YFV detected in humans (n = 6) and NHPs (n = 10) from Minas Gerais state during 2017–2018. Next, we performed evolutionary analyses and discussed the results in the light of epidemiological records (official numbers of YFV cases at each Brazilian Federative unit, reported by the Brazilian Ministry of Health). Nucleotide sequences of YFV from Southeast Brazil from 2016 to 2018 were highly conserved and formed a monophyletic lineage (BR-YFV_2016/18) within the genotype South America I. Different clusters were observed within lineage BR-YFV_2016/18, one containing the majority of isolates (from humans and NHPs), indicating the sylvatic transmission of YFV. We also detected a cluster characterized by two synapomorphies (amino acid substitutions) that contained YFV only associated with NHP what should be further investigated. The topology of lineage BR-YFV_2016/18 was congruent with epidemiological and temporal patterns of the ongoing epidemic. YFV isolates detected in 2016, in São Paulo state were located in the most basal position of the lineage, followed by the isolates from Minas Gerais and Espírito Santo obtained in 2017 and 2018. The most recent common ancestor of the lineage BR-YFV_2016/18 dated to 2015 (95% credible intervals = 2014–2016), in a period that was coincident with the reemergence of YFV in the Midwest region of Brazil.ConclusionsThe results demonstrated a single introduction of YFV in the Southeast region and the silent viral circulation before the onset of the outbreaks in 2016. Evolutionary analyses combined with epidemiological records supported the idea that BR-YFV_2016/18 was probably introduced from the Midwest into the Southeast region, possibly in São Paulo state. The persistence of YFV in the Southeast region, causing epidemics from 2016 to 2018, suggests that this region presents suitable ecological and climatic conditions for YFV maintenance during the epidemic and interepidemic seasons. This fact poses risks for the establishing of YF enzootic cycles and epidemics, outside the Amazon Basin in Brazil. YF surveillance and studies of viral dynamics deserve particular attention, especially in Midwest, Southeast and neighbor regions which are the main areas historically associated with YF outbreaks outside the Amazon Basin. YFV persistence in Southeast Brazil should be carefully considered in the context of public health, especially for public health decision-makers and researchers.
Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015–2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.