Several studies have been published on the frequency of the mucopolysaccharidoses (MPS) in different countries. The objective of the present study was to estimate the birth prevalence (BP) of MPS in Brazil. MPS diagnosis registered at MPS‐Brazil Network and in Instituto Vidas Raras were reviewed. BP was estimated by (a) the number of registered patients born between 1994 and 2015 was divided by the number of live births (LBs), and (b) a sample of 1,000 healthy individuals was tested for the most frequent variant in IDUA gene in MPS I (p.Trp402Ter) to estimate the frequency of heterozygosity and homozygosity. (a) The BP based on total number of LBs was (cases per 100,000 LBs): MPS overall: 1.25; MPS I: 0.24; MPS II: 0.37; MPS III: 0.21; MPS IV: 0.14; MPS VI: 0.28; MPS VII: 0.02. (b) The overall frequency of p.Trp402Ter was 0.002. Considering the frequency of heterozygotes for the p.Trp402Ter IDUA variant in the RS state, the frequency of this variant among MPS I patients and the relative frequency of the different MPSs, we estimated the birth prevalence of MPS in total and of each MPS type, as follows: MPS overall: 4.62; MPS I: 0.95; MPS II: 1.32; MPS III: 0.56; MPS IV: 0.57; MPS VI: 1.02; MPS VII: 0.05. This study provided original data about BP and relative frequency of the MPS types, in Brazil, based on the frequency of the commonest IDUA pathogenic variant and in the records of two large patient databases.
Roughly a third of the world’s population is estimated to have latent Mycobacterium tuberculosis infection, being at risk of developing active tuberculosis (TB) during their lifetime. Given the inefficacy of prophylactic measures and the increase of drug-resistant M. tuberculosis strains, there is a clear and urgent need for the development of new and more efficient chemotherapeutic agents, with selective toxicity, to be implemented on patient treatment. The component enzymes of the shikimate pathway, which is essential in mycobacteria and absent in humans, stand as attractive and potential targets for the development of new drugs to treat TB. This review gives an update on published work on the enzymes of the shikimate pathway and some insight on what can be potentially explored towards selective drug development.
New effective compounds for tuberculosis treatment are needed. This study evaluated the effects of a series of quinoxaline-derived chalcones against laboratorial strains and clinical isolates of M. tuberculosis. Six molecules, namely N5, N9, N10, N15, N16, and N23 inhibited the growth of the M. tuberculosis H37Rv laboratorial strain. The three compounds (N9, N15 and N23) with the lowest MIC values were further tested against clinical isolates and laboratory strains with mutations in katG or inhA genes. From these data, N9 was selected as the lead compound for further investigation. Importantly, this chalcone displayed a synergistic effect when combined with moxifloxacin. Noteworthy, the anti-tubercular effects of N9 did not rely on inhibition of mycolic acids synthesis, circumventing important mechanisms of resistance. Interactions with cytochrome P450 isoforms and toxic effects were assessed in silico and in vitro. The chalcone N9 was not predicted to elicit any mutagenic, genotoxic, irritant, or reproductive effects, according to in silico analysis. Additionally, N9 did not cause mutagenicity or genotoxicity, as revealed by Salmonella/microsome and alkaline comet assays, respectively. Moreover, N9 did not inhibit the cytochrome P450 isoforms CYP3A4/5, CYP2C9, and CYP2C19. N9 can be considered a potential lead molecule for development of a new anti-tubercular therapeutic agent.
Overexpressed human thymidine phosphorylase (hTP) has been associated with cancer
aggressiveness and poor prognosis by triggering proangiogenic and
antiapoptotic signaling. Designed as transition-state analogues by
mimicking the oxacarbenium ion, novel pyrimidine-2,4-diones were synthesized
and evaluated as inhibitors of hTP activity. The most potent compound
(8g) inhibited hTP in the submicromolar range with a
noncompetitive inhibition mode with both thymidine and inorganic phosphate
substrates. Furthermore, compound 8g was devoid of apparent
toxicity to a panel of mammalian cells, showed no genotoxicity signals,
and had low probability of drug–drug interactions and moderate
in vitro metabolic rates. Finally, treatment with 8g (50
mg/(kg day)) for 2 weeks (5 days/week) significantly reduced tumor
growth using an in vivo glioblastoma model. To the best of our knowledge,
this active compound is the most potent in vitro hTP inhibitor with
a kinetic profile that cannot be reversed by the accumulation of any
enzyme substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.