Directed migration of stimulated dendritic cells (DCs) to secondary lymphoid organs and their interaction with Ag-specific T cells is a prerequisite for the induction of primary immune responses. In this article, we show that murine DCs that lack myosin IXB (Myo9b), a motorized negative regulator of RhoA signaling, exhibit increased Rho signaling activity and downstream acto-myosin contractility, and inactivation of the Rho target protein cofilin, an actin-depolymerizing factor. On a functional level, Myo9b−/− DCs showed impaired directed migratory activity both in vitro and in vivo. Moreover, despite unaltered Ag presentation and costimulatory capabilities, Myo9b−/− DCs were poor T cell stimulators in vitro in a three-dimensional collagen matrix and in vivo, associated with altered DC–T cell contact dynamics and T cell polarization. Accordingly, Myo9b−/− mice showed an attenuated ear-swelling response in a model of contact hypersensitivity. The impaired migratory and T cell stimulatory capacity of Myo9b−/− DCs was restored in large part by pharmacological activation of cofilin. Taken together, these results identify Myo9b as a negative key regulator of the Rho/RhoA effector Rho-kinase [Rho-associated coiled-coil–forming kinase (ROCK)]/LIM domain kinase signaling pathway in DCs, which controls cofilin inactivation and myosin II activation and, therefore may control, in part, the induction of adaptive immune responses.
It is well established that allergy development can be prevented by repeated low-dose exposure to contact allergens. Exactly which immune mechanisms are responsible for this so-called low zone tolerance (LZT) is not clear, although CD8 + suppressor T cells are known to have a role. Here, we show that TNF released by tolerogenic CD11 + CD8 + DCs located in skin-draining lymph nodes is required and sufficient for development of tolerance to contact allergens in mice. DC-derived TNF protected mice from contact allergy by inducing apoptosis in allergen-specific effector CD8 + T cells via TNF receptor 2 but did not contribute to the generation and function of the regulatory T cells associated with LZT. The TNF-mediated killing mechanism was induced in an allergen-specific manner. Activation of tolerogenic DCs by LZT CD8 + suppressor T cells and enhanced TNF receptor 2 expression on contact allergen-specific CD8 + effector T cells were required for LZT. Our findings may explain how tolerance protects from allergic diseases, which could allow for the development of new strategies for allergy prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.