Computational enzyme design has made great strides over the last five years. Traditional methods of enzyme design require synthesis and evaluation of many mutations. Computational enzyme design has emerged as a powerful tool to predict how specific mutations modify a protein’s activity, stability, and/or selectivity. Such computational approaches can evaluate many mutations and reduce the load of in vitro work by identifying mutations likely to accomplish design objectives. Computational approaches can explore mutational spaces inaccessible in traditional mutagenesis. Computational methods reduce cost and time compared with experimental approaches. We review the efficacy and key differences of computational enzyme design methods as published in recent studies. The included articles used computational methods to design enzymes, were published no earlier than 2015, met design objectives, and verified results in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.