While coalbed methane (CBM) is a significant source of natural gas production globally, uncertainties regarding the proportions of biogenic and thermogenic natural gas in CBM reservoirs still remain. We integrate major gases, hydrocarbon composition, hydrocarbon stable isotopes and noble gases in fluids from 20 producing CBM wells to more accurately constrain the genetic source of natural gases in the eastern Illinois Basin, USA. Previous studies have indicated primarily biogenic production of methane (>99.6%) with negligible contributions from thermogenic natural gases. However, by integrating noble gases, we identify quantifiable (up to 19.2%) contributions of exogenous thermogenic gas in produced gases from the Seelyville and Springfield coal seams. Thermogenic gases are distinguished by a positive relationship between methane, ethane and helium-4, lower C1/C2+, heavier δ13C-CH4, more radiogenic noble gases (4He, 21Ne*, 40Ar*), and lower abundances of atmospherically derived gases (20Ne, 36Ar). Biogenic gases displayed lighter δ13C-CH4, higher C1/C2+, higher levels of atmospheric gases and lower abundances of radiogenic noble gases. Our data suggest that natural gases from a deeper, exogenous thermogenic source likely migrated to the Pennsylvanian-aged coals at an unknown time and later mixed with biogenic methane diluting the geochemical signature of the thermogenic methane within the Springfield and Seelyville coal seams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.