Atom probe tomography (APT) is a mass spectrometry method with atomic-scale spatial resolution that can be used for the investigation of a wide range of materials. The main limiting factor with respect to the type of problems that can be addressed is the small volume investigated and the randomness of common sample preparation methods. With existing site-specific specimen preparation methods it is still challenging to rapidly and reproducibly produce large numbers of successful samples from specifically selected grain boundaries or interfaces for systematic studies. A new method utilizing both focused ion beam (FIB) and transmission electron microscopy (TEM) is presented that can be used to reproducibly produce damage-free atom probe samples with features of interest at any desired orientation with an accuracy of better than 50 nm from samples that require very little prior preparation.
A combinatorial assessment of composition‐microstructure‐magnetic property relationships in magnetic high entropy AlCoxCr1‐xFeNi alloy (0 ≤ x ≤ 1) system has been carried out using compositionally graded alloys fabricated via laser additive manufacturing. At one end, the AlCoFeNi composition (x = 1) consisted of equiaxed B2 grains, exhibiting very early stages of phase separation (only compositional partitioning) into Ni–Al rich and Fe–Co rich regions within grains of the B2 phase. At the other extreme, the AlCrFeNi composition (x = 0) exhibited grains with pronounced spinodal decomposition, resulting in a B2 + bcc microstructure with the degree of spinodal decomposition progressively increasing with Cr content in these AlCoxCr1–xFeNi alloys. While the saturation magnetization (Ms) monotonically increases six times from x = 0 to x = 1, the coercivity (Hc) variation is non‐monotonic, increasing seven times from x = 0 to x = 0.4, and subsequently decreasing fourteen times from x = 0.4 to x = 1.0. The magnetic phase transition temperature (Tc) for these alloys also increases monotonically with increasing Co content with a second phase transition exhibited in a certain range of compositions between x = 0.6 to x = 0.8. Such substantial changes in the magnetization behavior and properties of magnetic high entropy systems opens possibilities of tuning these alloys for specific soft or hard magnetic component applications.
Non-conventional transformation pathways have been exploited to determine the degree of refinement of the microstructure of a metastable -Ti alloy. This has involved a set of heattreatments where samples, initially quenched to room temperature (RT) from above the transus are slowly heated to 350°C, then isothermal annealed at 350°C for various times prior to upquenching to 600°C and again isothermally annealed at that temperature, followed by quenching to RT. Interrupted treatments have also been performed so that the factors influencing the development of the final microstructure could be determined. Microstructures have been characterized by scanning and transmission electron microscopy, and atom probe tomography. It has been found that a distribution of the phase may be formed whose scale is intermediate between the "super refined" and "refined" versions observed in previous research. The results are consistent with precursory isothermal precipitates playing an indirect role in the formation of the refined distribution of the phase via a non-conventional transformation pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.