The classical Multiple Traveling Salesmen Problem is a well-studied optimization problem. Given a set ofngoals/targets andmagents, the objective is to findmround trips, such that each target is visited only once and by only one agent, and the total distance of these round trips is minimal. In this paper we describe the Multiagent Planning Problem, a variant of the classical Multiple Traveling Salesmen Problem: given a set ofngoals/targets and a team ofmagents,msubtours (simple paths) are sought such that each target is visited only once and by only one agent. We optimize for minimum time rather than minimum total distance; therefore the objective is to find the Team Plan in which the longest subtour is as short as possible (a min–max problem). We propose an easy to implement Genetic Algorithm Inspired Descent (GAID) method which evolves a set of subtours using genetic operators. We benchmarked GAID against other evolutionary algorithms and heuristics. GAID outperformed the Ant Colony Optimization and the Modified Genetic Algorithm. Even though the heuristics specifically developed for Multiple Traveling Salesmen Problem (e.g.,k-split, bisection) outperformed GAID, these methods cannot solve the Multiagent Planning Problem. GAID proved to be much better than an open-source Matlab Multiple Traveling Salesmen Problem solver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.