Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal disorder caused by deficiency of iduronate 2-sulfatase (IDS), leading to accumulation of glycosaminoglycans (GAGs) in tissues of affected individuals, progressive disease, and shortened lifespan. Currently available enzyme replacement therapy (ERT) requires lifelong infusions and does not provide neurologic benefit. We utilized a zinc finger nuclease (ZFN)-targeting system to mediate genome editing for insertion of the human IDS (hIDS) coding sequence into a "safe harbor" site, intron 1 of the albumin locus in hepatocytes of an MPS II mouse model. Three dose levels of recombinant AAV2/8 vectors encoding a pair of ZFNs and a hIDS cDNA donor were administered systemically in MPS II mice. Supraphysiological, vector dose-dependent levels of IDS enzyme were observed in the circulation and peripheral organs of ZFN+donor-treated mice. GAG contents were markedly reduced in tissues from all ZFN+donor-treated groups. Surprisingly, we also demonstrate that ZFN-mediated genome editing prevented the development of neurocognitive deficit in young MPS II mice (6-9 weeks old) treated at high vector dose levels. We conclude that this ZFN-based platform for expression of therapeutic proteins from the albumin locus is a promising approach for treatment of MPS II and other lysosomal diseases.
Recently, an enzymatic reaction was utilized to covalently link the N and C termini of membrane scaffold proteins to produce circularized nanodiscs that were more homogeneous and stable than standard nanodiscs. We continue this development and aim for obtaining high yields of stable and monodisperse nanodiscs for structural studies of membrane proteins by solution small‐angle scattering techniques. Based on the template MSP1E3D1, we designed an optimized membrane scaffold protein (His‐lsMSP1E3D1) with a sortase recognition motif and high abundance of solubility‐enhancing negative charges. With these modifications, we show that high protein expression is maintained and that the circularization reaction is efficient, such that we obtain a high yield of circularized membrane scaffold protein (csMSP1E3D1) and downstream circularized nanodiscs. We characterize the circularized protein and corresponding nanodiscs biophysically by small‐angle X‐ray scattering, size‐exclusion chromatography, circular dichroism spectroscopy, and light scattering and compare to noncircularized samples. First, we show that circularized and noncircularized (lsMSP1E3D1) nanodiscs are structurally similar and have the expected nanodisc structure. Second, we show that lsMSP1E3D1 nanodiscs are more stable compared to the template MSP1E3D1 nanodiscs as an effect of the extra negative charges and that csMSP1E3D1 nanodiscs have further improved stability as an effect of circularization. Finally, we show that a membrane protein can be efficiently incorporated in csMSP1E3D1 nanodiscs. Large‐scale production methods for circularized nanodiscs with improved thermal and temporal stability will facilitate better access to the nanodisc technology and enable applications at physiologically relevant temperatures.
Pregnant women have a good knowledge of ultrasound examination although the quality of information could be improved. Expectations are fulfilled and are clinically relevant. The acceptability and experiences of the examination are very high.
Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a rare X-linked recessive lysosomal disorder caused by defective iduronate-2-sulfatase (IDS), resulting in accumulation of heparan sulfate and dermatan sulfate glycosaminoglycans (GAGs). Enzyme replacement is the only Food and Drug Administration-approved therapy available for MPS II, but it is expensive and does not improve neurologic outcomes in MPS II patients. This study evaluated the effectiveness of adeno-associated virus (AAV) vector encoding human IDS delivered intracerebroventricularly in a murine model of MPS II. Supraphysiological levels of IDS were observed in the circulation (160-fold higher than wild type) for at least 28 weeks post injection and in most tested peripheral organs (up to 270-fold) at 10 months post injection. In contrast, only low levels of IDS were observed (7-40% of wild type) in all areas of the brain. Sustained IDS expression had a profound effect on normalization of GAG in all tested tissues and on prevention of hepatomegaly. Additionally, sustained IDS expression in the central nervous system (CNS) had a prominent effect in preventing neurocognitive deficit in MPS II mice treated at 2 months of age. This study demonstrates that CNS-directed, AAV9 mediated gene transfer is a potentially effective treatment for Hunter syndrome, as well as other monogenic disorders with neurologic involvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.