The Smoothened receptor (SMO) mediates signal transduction in the hedgehog pathway, which is implicated in normal development and carcinogenesis. SMO antagonists can suppress the growth of some tumors; however, mutations at SMO have been found to abolish their anti-tumor effects, a phenomenon known as chemoresistance. Here we report three crystal structures of human SMO bound to the antagonists SANT1 and Anta XV, and the agonist, SAG1.5, at 2.6–2.8Å resolution. The long and narrow cavity in the transmembrane domain of SMO harbors multiple ligand binding sites, where SANT1 binds at a deeper site as compared with other ligands. Distinct interactions at D4736.55 elucidated the structural basis for the differential effects of chemoresistance mutations on SMO antagonists. The agonist SAG1.5 induces a conformational rearrangement of the binding pocket residues, which could contribute to SMO activation. Collectively, these studies reveal the structural basis for the modulation of SMO by small molecules.
The current dopamine (DA) hypothesis of schizophrenia postulates striatal hyperdopaminergia and cortical hypodopaminergia. Although partial agonists at DA D2 receptors (D2Rs), like aripiprazole, were developed to simultaneously target both phenomena, they do not effectively improve cortical dysfunction. In this study, we investigate the potential for newly developed β-arrestin2 (βarr2)-biased D2R partial agonists to simultaneously target hyperand hypodopaminergia. Using neuron-specific βarr2-KO mice, we show that the antipsychotic-like effects of a βarr2-biased D2R ligand are driven through both striatal antagonism and cortical agonism of D2R-βarr2 signaling. Furthermore, βarr2-biased D2R agonism enhances firing of cortical fast-spiking interneurons. This enhanced cortical agonism of the biased ligand can be attributed to a lack of G-protein signaling and elevated expression of βarr2 and G proteincoupled receptor (GPCR) kinase 2 in the cortex versus the striatum. Therefore, we propose that βarr2-biased D2R ligands that exert region-selective actions could provide a path to develop more effective antipsychotic therapies.arrestin | antipsychotics | biased signaling | dopamine D2R | fast-spiking interneurons G protein-coupled receptors (GPCRs) represent the largest family of receptors in the human genome and are one of the most common targets of pharmaceutical drugs (1, 2). Upon ligand binding, GPCRs activate downstream G protein-dependent signaling pathways followed by phosphorylation of the receptor by G protein-coupled receptor kinases (GRKs) (3). Phosphorylation enhances association of the GPCR with β-arrestins (βarrs), and this combined process mediates desensitization of G-protein signaling (4) and internalization of GPCRs (5-7). Two isoforms of βarrs, βarr1 and βarr2, are widely coexpressed in most tissues in mammals and are 80% identical, but they can have either overlapping or distinct functions (8, 9). It is now firmly established that GPCRs activate downstream signaling pathways through not only canonical G-protein pathways but also, the ability of βarrs to scaffold distinct intracellular signaling complexes (10-12). Elucidation of these distinct G-protein and βarr signaling pathways has provided support for the concept of functional selectivity or biased signaling, wherein each signaling pathway has the ability to mediate distinct physiological responses (13). There are now several physiologically relevant examples of selective engagement of signaling pathways or selective GPCR ligands that target these different signaling pathways (13-15). Therefore, leveraging the concept of GPCR functional selectivity holds promise for the development of more selective therapeutic approaches. Dopamine (DA) is a catecholamine neurotransmitter that has been implicated in movement, reward, and cognition (16-19) as well as CNS disorders, such as schizophrenia, attention deficit hyperactivity disorder, Parkinson's disease, and obsessive-compulsive disorder (20-23). DA mediates its effects via GPCRs belonging to two major ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.