In recent times e-textiles have emerged as wonder safeguards due to the great potential background in space, military, healthcare, or portable electronics. As a result, widespread research and development have been done to make significant advancement in this field, but it still remains a key challenge to use one single product with multifunctional attributes with the past performance of key characteristics. In this work, phase-separated PEDOT:PSS ornamented with reduced graphene oxide (rGO) nanosheets, deposited on the newly fabricated ultralightweight, superhydrophobic, and mechanically enriched merino wool/nylon (W−N) composite textile followed by the dipping and drying strategy. The open edges-layered structure of rGO helping uniform deposition of PEDOTs clusters, which allows the formation of a stacked layer of PEDOTs/rGO-PEDOTs/PEDOTs for robust three-dimensional electrical transforming channel network within the W−N textile surface. These dip-coated multifunctional textiles show high electrical conductivities up to 90.5 S cm −1 conjugated with a flexible electromagnetic interference shielding efficiency of 73.8 dB (in X-band) and in-plane thermal conductivity of 0.81 W/mK with a minimum thickness of 0.84 mm. This thin coating maintained the hydrophobicity (water contact angle of ∼150°) leading to an excellent EM protective cloth combined with real-life antenna performance under high mechanical or chemical tolerance. Interestingly, this multiuse textile can also act as an exceptional TASER Proof Textile (TPT) due to a short out of the electrical shock coming from the TASER by its unique conducting network architecture. Remarkably, this coated textile can get a response by the soft touch to lighten up the household bulb and could establish wireless communication via an HC-05 Bluetooth module as a textile-based touch switch. This developed fabric could perform as a new potentially scalable single product in intelligent smart garments, portable nextgeneration electronics, and the growing threat of EM pollution.
Accurate diagnosis with secure and target-specific drug delivery improves the success rate in cancer treatment and patient survival outcomes. The development of stimuli-responsive theranostic with the molecular computing ability could address all these criteria at a time. This work attempts to design a multifunctional biocomputing agent that can serve as a secure and target-specific drug carrier and simultaneously act as a molecular logic device. Hence, we developed holmium-doped carbon dot-gelatin nanoparticles (HoCDGNPs) by two-step desolvation methods and used them as fluorescence (FL) imaging and MRI contrast agents with effective pH and Cu 2+ ion sensing ability. Furthermore, Boolean algebraic operations (NOR, OR, IMP, and NIMP) are executed on the HoCDGNP system using the FL/magnetic resonance (MR) response in the presence of different inputs (H + , OH − , and Cu 2+ ions), and the results are mesmerizing. Moreover, the FL quenching phenomena of HoCDGNPs in the presence of Cu 2+ ions by cupricamine or cupric-carboxylate coordination formation are also exploited in the living HeLa cells. Finally, the resulting system is used for pH-responsive drug delivery of a model anticancer drug (5-fluorouracil), and the release profile is found selective and sustained over the pH range 6−7.4. Thus, it counters the shortcomings associated with the 5-fluorouracil drug administration (short lifetime and poor specificity at high doses). The cellular uptake and cell viability assessment are also accomplished in cancerous and noncancerous cell lines to ensure the acceptability of this multifunctional biocomputing system, and the results are pretty satisfactory.
The
influence of size and localized defect states on photogenerated
carrier recombination dynamics, which affects the performance of graphene
quantum dots (GQDs)-based Si-compatible near-UV heterojunction photodetectors,
is reported. GQDs of varying size from ∼3.0 to ∼8.0
nm have been prepared by a top-down method of oxidative cutting of
graphene oxide followed by hydrothermal reduction and gradient centrifugation
at different speeds. Structural, compositional, and photophysical
characteristics as well as photocarrier dynamics of different sized
samples have been studied. Spectroscopic features and carrier dynamics
of GQDs are effectively controlled by their size and localized surface
states, which also determine the average recombination lifetime of
photogenerated carriers. Two-terminal vertical heterojunction photodetector
devices fabricated by using solution-processed quantum dots exhibit
superior performance over a broad spectrum with a peak response in
the near-UV (380 nm) region. The device fabricated by using ∼6.0
nm diameter GQDs displayed the highest peak responsivity of 3.5 A/W,
showing an interesting correlation with carrier dynamics. To our best
knowledge, this is the only report in graphene quantum dots or carbon
nanostructure genre showing the direct correlation between size of
the quantum dots and localized surface states on photocarrier dynamics
and consequential performance of photodetector devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.