Some of the protective effects of MSCs on infarct repair are mediated by macrophages, which are essential for early healing and repair. Thus, targeting macrophages could be a novel strategy to improve infarct healing and repair.
Macrophages are involved in every cardiovascular disease and are an attractive therapeutic target. Macrophage activation is complex and can be either beneficial or deleterious, depending upon its mode of action, its timing, and its duration. An important macrophage characteristic is its plasticity, which enables it to switch from one subset to another. Macrophages, which regulate healing and repair after myocardial infarction, have become a major target for both treatment and diagnosis (theranostic). The aim of the present review is to describe the recent discoveries related to targeting and modulating of macrophage function to improve infarct repair. We will briefly review macrophage polarization, plasticity, heterogeneity, their role in infarct repair, regeneration, and cross talk with mesenchymal cells. Particularly, we will focus on the potential of macrophage targeting in situ by liposomes. The ability to modulate macrophage function could delineate pathways to reactivate the endogenous programs of myocardial regeneration. This will eventually lead to development of small molecules or biologics to enhance the endogenous programs of regeneration and repair.
BackgroundIschemic cardiac damage is associated with upregulation of cardiac pro-inflammatory cytokines, as well as invasion of lymphocytes into the heart. Regulatory T cells (Tregs) are known to exert a suppressive effect on several immune cell types. We sought to determine whether the Treg pool is influenced by myocardial damage and whether Tregs transfer and deletion affect cardiac remodeling.Methods and ResultsThe number and functional suppressive activity of Tregs were assayed in mice subjected to experimental myocardial infarction. The numbers of splenocyte-derived Tregs in the ischemic mice were significantly higher after the injury than in the controls, and their suppressive properties were significantly compromised. Compared with PBS, adoptive Treg transfer to mice with experimental infarction reduced infarct size and improved LV remodeling and functional performance by echocardiography. Treg deletion with blocking anti-CD25 antibodies did not influence infarct size or echocardiographic features of cardiac remodeling.ConclusionTreg numbers are increased whereas their function is compromised in mice with that underwent experimental infarction. Transfer of exogeneous Tregs results in attenuation of myocardial remodeling whereas their ablation has no effect. Thus, Tregs may serve as interesting potential interventional targets for attenuating left ventricular remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.