Summary The proepicardial organ is an important transient structure that contributes cells to various cardiac lineages. However, its contribution to the coronary endothelium has been disputed, with conflicting data arising in chick and mouse. Here we resolve this conflict by identifying two proepicardial markers, Scleraxis (Scx) and Semaphorin3D (Sema3D), that genetically delineate heretofore uncharacterized proepicardial subcompartments. In contrast to previously fate mapped Tbx18/WT-1-expressing cells that give rise to vascular smooth muscle, Scx and Sema3D-expressing proepicardial cells give rise to coronary vascular endothelium both in vivo and in vitro. Furthermore, Sema3D+ and Scx+ proepicardial cells contribute to the early sinus venosus and cardiac endocardium, respectively, two tissues linked to vascular endothelial formation at later stages. Taken together, our studies demonstrate that the proepicardial organ is a molecularly compartmentalized structure, reconciling prior chick and mouse data and providing a more complete understanding of the progenitor populations that establish the coronary vascular endothelium.
The HLA molecules are membrane-bound transporters that carry peptides from the cytoplasm to the cell surface for surveillance by circulating T lymphocytes. Although low levels of soluble HLA molecules (sHLA) are normally released into the blood, many types of tumor cells release larger amounts of these sHLA molecules, presumably to counter immune surveillance by T cells. Here we demonstrate that these sHLA molecules are still bound with their authentic peptide repertoires, similar to those of the membranal HLA molecules (mHLA). Therefore, a single immunoaffinity purification of the plasma sHLA molecules, starting with a few milliliters of patients' blood, allows for identification of very large sHLA peptidomes by mass spectrometry, forming a foundation for development of a simple and universal blood-based cancer diagnosis. The new methodology was validated using plasma and tumor cells of multiple-myeloma and leukemia patients, plasma of healthy controls, and with cultured cancer cells. The analyses identified thousands of sHLA peptides, including some cancer-related peptides, present among the sHLA peptidomes of the cancer patients. Furthermore, because the HLA peptides are the degradation products of the cellular proteins, this sHLA peptidomics approach opens the way for investigation of the patterns of protein synthesis and degradation within the tumor cells.
Background A multiple myeloma (MM) vaccine has been developed whereby patient derived tumor cells are fused with autologous dendritic cells (DCs), creating a hybridoma that stimulates a broad anti-tumor response. We report on the results of a phase II trial in which patients underwent vaccination following autologous stem cell transplantation (ASCT) to target minimal residual disease. Methods Twenty-four patients received serial vaccinations with DC/myeloma fusion cells following post-transplant hematopoietic recovery. A second cohort of 12 patients received a pre-transplant vaccine followed by post-transplant vaccinations. DCs generated from adherent mononuclear cells cultured with GM-CSF, IL-4 and TNFα were fused with autologous bone marrow-derived MM cells using polyethylene glycol (PEG). Fusion cells were quantified by determining the percentage of cells that co-express DC and MM antigens. Findings The post-transplant period was associated with reduction in general measures of cellular immunity; however, an increase in CD4 and CD8+ myeloma specific T cells was observed after ASCT that was significantly expanded following post-transplant vaccination. Seventy-eight percent of patients achieved a best response of CR+VGPR and 47% achieved a CR/nCR. Remarkably, 24% of patients who achieved a partial response following transplant were converted to CR/nCR after vaccination and at over 3 months post-transplant, consistent with a vaccine-mediated effect on residual disease. Interpretation The post-transplant period for patients with multiple myeloma provides a unique platform for cellular immunotherapy in which vaccination with DC/MM fusions resulted in the marked expansion of myeloma specific T cells and cytoreduction of minimal residual disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.