Arrays of 6.6 nm iron oxide nanocrystals coated with fatty acid molecules were produced using the Langmuir-Blodgett technique. The arrays had a varying number of layers stacked together, going from two dimensional to three dimensional and two different in-plane interparticle separations. While temperature-dependent ac susceptibility measurements of the isolated nanocrystals obeyed the Neel-Brown relaxation law, the array relaxation deviated significantly from this simple law. This deviation together with the observed dc field influence on the susceptibility-temperature curves, the large shifts in blocking temperatures and reduction in susceptibility-temperature curve widths on going from isolated particles to the arrays indicated collective magnetization dynamics during magnetization freezing. A scaling law analysis of this freezing dynamics yielded different powers for the two different interparticle separations with no dependence on dimensionality. In spite of the spin-glass-like behavior, it is possible that small, magnetically ordered domains of nanocrystals form at low temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.