BackgroundFitness recovery of HIV-1 “in vitro” was studied using viral clones that had their fitness decreased as a result of plaque-to-plaque passages.Principal FindingsAfter ten large population passages, the viral populations showed an average increase of fitness, although with wide variations among clones. While 5 clones showed significant fitness increases, 3 clones showed increases that were only marginally significant (p<0.1), and 4 clones did not show any change. Fitness recovery was not accompanied by an increase in p24 production, but was associated with an increase in viral titer. Few mutations (an average of 2 mutations per genome) were detected in the consensus nucleotide sequence of the entire genome in all viral populations. Five of the populations did not fix any mutation, and three of them displayed marginally significant fitness increases, illustrating that fitness recovery can occur without detectable alterations of the consensus genomic sequence. The investigation of other possible viral factors associated with the initial steps of fitness recovery, showed that viral quasispecies heterogeneity increased between the initial clones and the passaged populations. A direct statistical correlation between viral heterogeneity and viral fitness was obtained.ConclusionsThus, the initial fitness recovery of debilitated HIV-1 clones was mediated by an increase in quasispecies heterogeneity This observation, together with the invariance of the consensus sequence despite fitness increases demonstrates the relevance of quasispecies heterogeneity in the evolution of HIV-1 in cell culture.
We studied viral evolution in three HIV-1 ancestral patients from a group of LTNPs; although some minor sequences showing viral evolution were detected in all patients, the extremely low viral evolution of their viruses was shown by the phylogenetic analysis of the env sequences. Complete nucleotide sequencing of viral DNA showed the major presence of deletions. In two patients, deletions of 1088 and 228 nucleotides mapped to 5' LTR-gag region; in the other, a 247 nucleotide deletion was positioned in pol gene up to the vif ORF. These deleted genomes became dominant during follow up. Patient's viruses displayed 13 common mutations in conserved residues, from the 5' LTR to the nef gene. These mutations provided evidence of a common origin. Regarding host characteristics, one patient had HLA B2705/B5801; another B1402/B5701; whereas a third showed B3901/B4402 and was Delta32-CCR5 heterozygous. These HIV controllers presented a combination of deleted viral genomes and host protective factors.
Human immunodeficiency virus 1 (HIV-1) dual infections are considered important because they have been related to AIDS progression. We identified dual infections in 2 patients with long-term, nonprogressive HIV-1 disease; the first patient was diagnosed as being already coinfected, on the basis of the first sample analyzed, but a previous superinfection could not be excluded; the second patient was diagnosed as having a superinfection, on the basis of the 9-year difference between the viral dating of the 2 strains. Dual infections occur in patients with long-term, nonprogressive disease, with no immediate clinical manifestations. Such occurrences could indicate a general phenomenon in natural HIV-1 infections.
Background Long-Term Non-Progressors (LTNPs) are untreated Human Immunodeficiency virus type 1 (HIV-1) infected individuals able to control disease progression for prolonged periods. However, the LTNPs status is temporary, as viral load increases followed by decreases in CD4 + T-cell counts. Control of HIV-1 infection in LTNPs viremic controllers, have been associated with effective immunodominant HIV-1 Gag-CD8 + T-cell responses restricted by protective HLA-B alleles. Individuals carrying HLA-B*14:02 control HIV-1 infection is related to an immunodominant Env-CD8 + T-cell response. Limited data are available on the contribution of HLA-B*14:02 CD8 + T -cells in LTNPs. Results In this study, we performed a virological and immunological detailed analysis of an HLA-B*14:02 LNTP individual that lost viral control (LVC) 27 years after HIV-1 diagnosis. We analysed viral evolution and immune escape in HLA-B*14:02 restricted CD8 + T -cell epitopes and identified viral evolution at the Env-EL9 epitope selecting the L592R mutation. By IFN-γ ELISpot and immune phenotype, we characterized HLA- B*14:02 HIV-1 CD8 + T cell responses targeting, Gag-DA9 and Env-EL9 epitopes before and after LVC. We observed an immunodominant response against the Env-EL9 epitope and a decreased of the CD8 T + cell response over time with LVC. Loss of Env-EL9 responses was concomitant with selecting K588R + L592R mutations at Env-EL9. Finally, we evaluated the impact of Env-EL9 escape mutations on HIV-1 infectivity and Env protein structure. The K588R + L592R escape variant was directly related to HIV-1 increase replicative capacity and stability of Env at the LVC. Conclusions These findings support the contribution of immunodominant Env-EL9 CD8 + T-cell responses and the imposition of immune escape variants with higher replicative capacity associated with LVC in this LNTP. These data highlight the importance of Env-EL9 specific-CD8 + T-cell responses restricted by the HLA-B*14:02 and brings new insights into understanding long-term HIV-1 control mediated by Env mediated CD8 + T-cell responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.