We investigated foraging decisions by adult females of the common green bottle fly, Lucilia sericata, in accordance with their physiological state. When we gave female flies a choice between visually occluded, fresh canine feces (feeding site) and a CO2-euthanized rat (carrion oviposition site), 3-d-old "protein-starved" females responded equally well to feces and carrion, whereas protein-fed gravid females with mature oocytes responded only to carrion, indicating resource preferences based on a fly's physiological state. Dimethyl trisulfide (DMTS) is known to attract gravid L. sericata females to carrion. Therefore, we analyzed headspace from canine feces by gas chromatographic-electroantennographic detection (GC-EAD) and GC/mass spectrometry. In bioassays, of the 17 fecal odorants that elicited GC-EAD responses from fly antennae, a blend of indole and one or more of the alcohols phenol, m-/p-cresol and 1-octen-3-ol proved as attractive to flies as canine feces. Unlike young females, gravid females need to locate carrion for oviposition and distinguish between fresh and aging carrion, the latter possibly detrimental to offspring. Gravid female L. sericata accomplish this task, in part, by responding to trace amounts of DMTS emanating from fresh carrion and by discriminating against carrion as soon it begins to produce appreciable amounts of indole, which is also the second-most abundant semiochemical in fresh canine feces, and apparently serves as an indicator of food rather than oviposition resources. Our results emphasize the importance of studying foraging choices by flies in accordance with their physiological stage.
In recent studies, the yeast species Hanseniaspora uvarum and Lachancea thermotolerans were isolated from the digestive tract of four North American yellowjacket species (Hymenoptera: Vespidae), and attraction of yellowjackets to brewer's yeast, Saccharomyces cerevisiae (all Saccharomycetaceae), growing on fruit powder was demonstrated. We tested the hypothesis that Vespula spp. are attracted to cultures of H. uvarum and L. thermotolerans and their respective volatiles. In field experiments, we found that H. uvarum and L. thermotolerans are attractive to three species of yellowjacket, but only when grown on grape juice‐infused yeast peptone dextrose (YPD) agar. Using gas chromatography‐mass spectrometry, we analyzed the headspace volatiles produced by these yeasts, and field tested an 18‐component yeast synthetic semiochemical blend. This synthetic blend attracted western yellowjackets, Vespula pensylvanica (Saussure), but no other yellowjacket species. Acetic acid or ethanol added to the synthetic blend at biologically relevant doses either had no effect or significantly lowered trap captures. Our results demonstrate that yeast symbionts isolated from the digestive tract of yellowjackets are attractive to their hosts. Further research is needed to identify the volatiles mediating attraction of species other than V. pensylvanica to the yeast cultures.
The ecological role of social wasps has been extensively studied, but little is known about symbiotic relationships of these wasps with microbes. Recently, it was shown that vespid wasps in Europe carry yeasts, predominantly Saccharomyces cerevisiae, in their gastrointestinal (GI) tract. Interestingly, this niche allowed for sexual recombination of yeasts to occur and the formation of novel hybrid species. Our goals were 1) to survey the GI tract of eusocial wasps in the Pacific Northwest for the presence of yeasts and 2) to compare the diversity of such yeasts to that described for wasps in Europe. The GI tracts of 19 individual wasps from five species were plated, and 27 yeast-like colonies were identified to the species level. Yeasts in the genera Lachancea and Hanseniaspora each comprised ∼30% of the isolates; ∼25% were identified as Metschnikowia spp., with the remaining 10% belonging to Rhodotorula. Four bacterial isolates were identified as Escherichia coli, Enterococcus faecalis, and two isolates of Stenotrophomonas maltophilia. Yeasts were present at all life stages of the wasps except for two unfed gynes of Dolichovespula maculata (L.) that contained only bacteria. The presence of a particular yeast species was not correlated with any wasp species. Furthermore, S. cerevisiae was not found in any wasp species. This highlights an interesting difference in the life cycle of both S. cerevisiae and wasps in Europe and the Pacific Northwest, and prompts further studies on the interactions of these microbes with their host wasps.
Previously, we showed that the symbiotic yeast Lachancea thermotolerans (Filippov) (Saccharomycetales: Saccharomycetaceae) is attractive to its Vespula (Hymenoptera: Vespidae) yellowjacket hosts when grown on media supplemented with grape juice. We hypothesized that "Concerto", a commercial strain of this yeast, could be combined with fruit powder to form a shelf-stable bait for trapping yellowjackets. Using molecular techniques, we first confirmed that Concerto yeast is indeed the species L. thermotolerans. We then tested whether: 1) Concerto yeast produces volatiles similar to those produced by L. thermotolerans isolated from yellowjackets, 2) Concerto yeast enhances attraction of yellowjackets to fruit powder, 3) a Concerto yeast/fruit powder bait interacts synergistically with a yellowjacket semiochemical lure, and 4) a synthetic analog blend of Concerto-produced volatiles attracts yellowjackets. Using gas chromatography-mass spectrometry, we demonstrated that the chemical composition of Concerto-produced volatiles closely resembles that produced by a yellowjacket-isolated strain of L. thermotolerans. In field experiments, addition of Concerto to fruit powder doubled its attractiveness to yellowjackets. Addition of the Concerto/fruit powder bait to a heptyl butyrate-based wasp lure revealed a weak additive effect. A three-component synthetic analog blend of volatiles identified from the Concerto/fruit powder bait attracted Vespula pensylvanica (Saussure), but no other yellowjacket species. Our results suggest that commercial L. thermotolerans in combination with fruit powder could be used as a yellowjacket bait, and that addition of yeast-produced volatiles to a commercial wasp lure may improve its attractiveness to V. pensylvanica. Further research should determine why the synthetic volatile blend failed to attract Vespula species other than V. pensylvanica.
The German yellowjacket, Vespula germanica F., and common yellowjacket, Vespula vulgaris L. (Hymenoptera: Vespidae), are pests of significant economic, environmental, and medical importance in many countries. There is a need for the development and improvement of attractive baits that can be deployed in traps to capture and kill these wasps in areas where they are a problem. Yellowjackets are known to feed on fermenting fruit, but this resource is seldom considered as a bait due to its ephemeral nature and its potential attractiveness to nontarget species. We analyzed the headspace volatiles of dried fruit and fruit powder baits with and without Brewer’s yeast, Saccharomyces cerevisiae, using gas chromatography–mass spectrometry, and we field tested these baits for their attractiveness to yellowjackets in Argentina. The addition of yeast to dried fruit and fruit powder changed the volatile compositions, increasing the number of alcohols and acids and decreasing the number of aldehydes. Dried fruit and fruit powder baits on their own were hardly attractive to yellowjackets, but the addition of yeast improved their attractiveness by 9- to 50-fold and surpassed the attractiveness of a commercial heptyl butyrate-based wasp lure. We suggest that further research be done to test additional varieties and species of yeasts. A dried fruit or fruit powder bait in combination with yeast could become a useful tool in the management of yellowjackets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.