SummaryMethamphetamine (MA) abuse has reached epidemic proportions in the United States. Users of MA report dramatic increases in sexual drive that have been associated with increased engagement in risky sexual behavior leading to higher rates of sexually transmitted diseases and unplanned pregnancies. The ability of MA to enhance sexual drive in females is enigmatic since related psychostimulants like amphetamine and cocaine appear not to affect sexual drive in women, and in rodents models, amphetamine has been reported to be inhibitory to female sexual behavior. Examination of MA's effects on female sexual behavior in an animal model is lacking. Here, using a rodent model, we have demonstrated that MA enhanced female sexual behavior. MA (5mg/kg) or saline vehicle was administered once daily for three days to adult ovariectomized rats primed with ovarian steroids. MA treatment significantly increased the number of proceptive events and the lordosis response compared to hormonally-primed, saline controls. The effect of MA on the neural circuitry underlying the motivation for sexual behavior was examined using Fos immunoreactivity. In the medial amygdala and the ventromedial nucleus of the hypothalamus, nuclei implicated in Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Conflicts of InterestThe authors declare that, except for income received from the primary employer, no financial support or compensation has been received from any individual or corporate entity over the past three years for research or professional service and there are no personal financial holdings that could be perceived as constituting a potential conflict of interest. NIH Public Access Author ManuscriptPsychoneuroendocrinology. Author manuscript; available in PMC 2011 February 1. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript motivated behaviors, ovarian hormones and MA independently enhance the neuronal activation, but more striking was the significantly greater activation induced by their combined administration. Increases in dopamine neurotransmission may underlie the MA/hormone mediated increase in neuronal activation. In support of this possibility, ovarian hormones significantly increased tyrosine hyroxylase (the rate limiting enzyme in dopamine synthesis) immunoreactivity in the medial amygdala. Thus our present data suggest that the interactions of MA and ovarian hormones leads to changes in the neural substrate of key nuclei involved in mediating female sexual behaviors, and these changes may underlie MA's ability to enhance these behaviors.
Rapid eye movement (REM) sleep onset is triggered by disinhibition of cholinergic neurons in the pons. During REM sleep, the brain exhibits prominent activity in the 5–8 Hz (theta) frequency range. How REM sleep onset and theta waves are regulated is poorly understood. Astrocytes, a non-neuronal cell type in the brain, respond to cholinergic signals by elevating their intracellular Ca2+ concentration. The goal of this study was to assess the sleep architecture of mice with attenuated IP3 mediated Ca2+ signaling in astrocytes. Vigilance states and cortical electroencephalograph power were measured in wild type mice and mice with attenuated IP3/Ca2+ signaling. Attenuating IP3/Ca2+ signaling specifically in astrocytes caused mice to spend more time in REM sleep and enter this state more frequently during their inactive phase. These mice also exhibited greater power in the theta frequency range. These data suggest a role for astrocytic IP3/Ca2+ signaling in modulating REM sleep and the associated physiological state of the cortex.
Activation of the immune system elicits several behavioral changes collectively called sickness. Among the behavioral changes, systemic infections induce an increase in time spent in nonrapid-eye-movement (NREM) sleep and an increase of slow wave activity (or "sleep pressure"). Using an inducible, astrocyte-specific transgenic dominant negative SNARE (dnSNARE) mouse line we recently demonstrated that gliotransmission plays an important role in sleep homeostasis through an adenosine receptor 1 (A1R)-sensitive pathway. It has been hypothesized that systemic infection, mimicked by peripheral administration of lipopolysaccharide (LPS), increases sleeping behavior in part through upregulation of central adenosine levels. Moreover, as a source of immunologically relevant factors, astrocytes play a pivotal role in the central nervous system immune and inflammatory responses. However, little is known about the role of astrocytes in the CNS response to a peripheral immune challenge. We hypothesize that LPS impacts sleep homeostasis through the modulation of astrocyte-derived adenosine accumulation. We therefore used dnSNARE mice to determine whether astrocytes contribute to the increased sleep pressure under immune challenge and whether this is a result of changes in adenosine signaling. We demonstrate that dnSNARE-mediated gliotransmission is required for the ability of LPS to elevate sleep pressure as measured by the power of slow wave activity during NREM sleep. Moreover, in agreement with a role of astrocyte-derived adenosine in modulating sleep homeostasis, we find that intracerebroventricular infusion of the A1R antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT) mimics this dnSNARE phenotype. Taken together, our data demonstrate that astrocytic adenosine acting through A1 receptors contributes to the modulation of sleep pressure by LPS.
Sleep is an evolutionarily conserved phenomenon that is clearly essential for survival but we have limited understanding of how and why it is so important. ATP/adenosine signaling has been known to be important in the regulation of sleep and recent evidence suggests a critical role for gliotransmission in the modulation of sleep homeostasis. Here we review the regulation of ATP/adenosine in the nervous system and provide evidence of a critical role for astrocyte derived adenosine in the regulation of sleep homeostasis and the modulation of synaptic transmission. Further understanding of the role of glial cells in the regulation of sleep may provide new targets for pharmaceutical intervention in the treatment of brain dysfunctions, specifically those that are comorbid with sleep disruptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.