Iron is essential for many cellular functions; consequently, disturbances of iron homeostasis, leading to either iron deficiency or iron overload, can have significant clinical consequences. Despite the clinical prevalence of these disorders, the mechanism by which dietary iron is absorbed into the body is poorly understood. We have identified a key component in intestinal iron transport by study of the sex-linked anaemia (sla) mouse, which has a block in intestinal iron transport. Mice carrying the sla mutation develop moderate to severe microcytic hypochromic anaemia. Although these mice take up iron from the intestinal lumen into mature epithelial cells normally, the subsequent exit of iron into the circulation is diminished. As a result, iron accumulates in enterocytes and is lost during turnover of the intestinal epithelium. Biochemical studies have failed to identify the underlying difference between sla and normal mice, therefore, we used a genetic approach to identify the gene mutant in sla mice. We describe here a novel gene, Heph, encoding a transmembrane-bound ceruloplasmin homologue that is mutant in the sla mouse and highly expressed in intestine. We suggest that the hephaestin protein is a multicopper ferroxidase necessary for iron egress from intestinal enterocytes into the circulation and that it is an important link between copper and iron metabolism in mammals.
Angiotensin II is an important effector molecule controlling blood pressure and volume in the cardiovascular system. Its importance is manifested by the efficacy of angiotensin-converting enzyme inhibitors in the treatment of hypertension and congestive heart failure. Angiotensin II interacts with two pharmacologically distinct subtypes of cell-surface receptors, AT1 and AT2. AT1 receptors seem to mediate the major cardiovascular effects of angiotensin II. Here we report the isolation by expression cloning of a complementary DNA encoding a unique protein with the pharmacological specificity of a vascular AT1 receptor. Hydropathic modelling of the deduced protein suggests that it shares the seven-transmembrane-region motif with the G protein-coupled receptor superfamily. Knowledge of the AT1 receptor primary sequence should now permit structural analysis, definition of the angiotensin II receptor gene family and delineation of the contribution of AT receptors to the genetic component of hypertension.
Lu X, Murphy TC, Nanes MS, Hart CM. PPAR␥ regulates hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells through NF-B. Am J Physiol Lung Cell Mol Physiol 299: L559 -L566, 2010. First published July 9, 2010; doi:10.1152/ajplung.00090.2010.-NADPH oxidases are a major source of superoxide production in the vasculature. The constitutively active Nox4 subunit, which is selectively upregulated in the lungs of human subjects and experimental animals with pulmonary hypertension, is highly expressed in vascular wall cells. We demonstrated that rosiglitazone, a synthetic agonist of the peroxisome proliferatoractivated receptor-␥ (PPAR␥), attenuated hypoxia-induced pulmonary hypertension, vascular remodeling, Nox4 induction, and reactive oxygen species generation in the mouse lung. The current study examined the molecular mechanisms involved in PPAR␥-regulated, hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells (HPASMC). Exposing HPASMC to 1% oxygen for 72 h increased Nox4 gene expression and H 2O2 production, both of which were reduced by treatment with rosiglitazone during the last 24 h of hypoxia exposure or by treatment with small interfering RNA (siRNA) to Nox4. Hypoxia also increased HPASMC proliferation as well as the activity of a Nox4 promoter luciferase reporter, and these increases were attenuated by rosiglitazone. Chromatin immunoprecipitation assays demonstrated that hypoxia increased binding of the NF-B subunit, p65, to the Nox4 promoter and that binding was attenuated by rosiglitazone treatment. The role of NF-B in Nox4 regulation was further supported by demonstrating that overexpression of p65 stimulated Nox4 promoter activity, whereas siRNA to p50 or p65 attenuated hypoxic stimulation of Nox4 promoter activity. These results provide novel evidence for NF-B-mediated stimulation of Nox4 expression in HPASMC that can be negatively regulated by PPAR␥. These data provide new insights into potential mechanisms by which PPAR␥ activation inhibits Nox4 upregulation and the proliferation of cells in the pulmonary vascular wall to ameliorate pulmonary hypertension and vascular remodeling in response to hypoxia. nuclear factor-B; peroxisome proliferator-activated receptor-␥ NADPH OXIDASES ARE A MAJOR source of superoxide production in the vasculature that contributes to endothelial dysfunction and vascular cell proliferation (4,19). In nonphagocytic cells, the catalytic moiety of NADPH oxidases is composed of one or more gp91 phox (Nox2) homologs, Nox1, -3, -4, or -5, Duox1, or Duox2 (27). These Nox homologs associate with the membrane-bound p22 phox subunit to generate reactive oxygen species (ROS). Nox4 is highly expressed in vascular wall cells including smooth muscle and endothelial cells (47). In contrast to the other Nox homologs, current evidence indicates that Nox4 is constitutively active (1), and increases in Nox4 mRNA levels increase Nox4 activity (45). Nox4 expression is increased by diverse stimuli (4) including E2F transcription factors, serum starvati...
Increased NADP reduced (NADPH) oxidase 4 (Nox4) and reduced expression of the nuclear hormone receptor peroxisome proliferator-activated receptor g (PPARg) contribute to hypoxiainduced pulmonary hypertension (PH). To examine the role of Nox4 activity in pulmonary vascular cell proliferation and PH, the current study used a novel Nox4 inhibitor, GKT137831, in hypoxiaexposed human pulmonary artery endothelial or smooth muscle cells (HPAECs or HPASMCs) in vitro and in hypoxia-treated mice in vivo. HPAECs or HPASMCs were exposed to normoxia or hypoxia (1% O 2 ) for 72 hours with or without GKT137831. Cell proliferation and Nox4, PPARg, and transforming growth factor (TGF)b1 expression were measured. C57Bl/6 mice were exposed to normoxia or hypoxia (10% O 2 ) for 3 weeks with or without GKT137831 treatment during the final 10 days of exposure. Lung PPARg and TGF-b1 expression, right ventricular hypertrophy (RVH), right ventricular systolic pressure (RVSP), and pulmonary vascular remodeling were measured. GKT137831 attenuated hypoxia-induced H 2 O 2 release, proliferation, and TGF-b1 expression and blunted reductions in PPARg in HPAECs and HPASMCs in vitro. In vivo GKT137831 inhibited hypoxia-induced increases in TGF-b1 and reductions in PPARg expression and attenuated RVH and pulmonary artery wall thickness but not increases in RVSP or muscularization of small arterioles. This study shows that Nox4 plays a critical role in modulating proliferative responses of pulmonary vascular wall cells. Targeting Nox4 with GKT137831 provides a novel strategy to attenuate hypoxiainduced alterations in pulmonary vascular wall cells that contribute to vascular remodeling and RVH, key features involved in PH pathogenesis.Keywords: rosiglitazone; PPARg; TGF-b; pulmonary hypertension Pulmonary hypertension (PH) is a progressive disorder associated with significant morbidity and mortality. Although recent therapeutic advances have improved survival for patients with PH, the prognosis remains poor (1). The pathobiology of PH is complex, and factors that contribute to endothelial dysfunction have been implicated in pathogenesis (2, 3). Among these factors, NADP reduced (NADPH) oxidase enzymes that produce reactive oxygen species (ROS) contribute to the development of a variety of vascular diseases, such as atherosclerosis (4) and systemic (5) and pulmonary hypertension (6). NADPH oxidases catalyze the reduction of molecular oxygen to generate superoxide (O 2 .2 ), hydrogen peroxide (H 2 O 2 ), or secondary oxidants (7). Seven isoforms of the catalytic moiety of the nonphagocytic NADPH oxidase enzyme have been described (Nox1-5, Duox1-2). These subunits are homologous to the catalytic moiety of the prototype phagocytic NADPH oxidase Nox2 (or gp91 phox ) but differ from each other regarding cellular localization, tissue distribution, regulation, activation, and expression (7,8). For example, although both Nox1 and Nox4 are expressed in vascular smooth muscle cells (VSMCs), they are targeted to discreet intracellular locations, are differe...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.