Mismatch repair deficiency (MMRD) is involved in the initiation of both hereditary and sporadic tumors. MMRD has been extensively studied in colorectal cancer and endometrial cancer, but not so in other tumors, such as ovarian carcinoma. We have determined the expression of mismatch repair proteins in a large cohort of 502 early-stage epithelial ovarian carcinoma entailing all the 5 main subtypes: high-grade serous carcinoma, endometrioid ovarian carcinoma (EOC), clear cell carcinoma (CCC), mucinous carcinoma, and low-grade serous carcinoma. We studied the association of MMRD with clinicopathologic and immunohistochemical features, including tumor-infiltrating lymphocytes in EOC, the histologic type in which MMRD is most frequent. In addition, MLH1 promoter methylation status and massive parallel sequencing were used to evaluate the proportion of sporadic and Lynch syndrome–associated tumors, and the most frequently mutated genes in MMRD EOCs. MMRD occurred only in endometriosis-associated histologic types, and it was much more frequent in EOC (18%) than in CCC (2%). The most frequent immunohistochemical pattern was loss of MLH1/PMS2, and in this group, 80% of the cases were sporadic and secondary to MLH1 promoter hypermethylation. The presence of somatic mutations in mismatch repair genes was the other mechanism of MMRD in sporadic tumors. In this series, the minimum estimated frequency of Lynch syndrome was 35% and it was due to germline mutations in MLH1, MSH2, and MSH6. ARID1A, PTEN, KTM2B, and PIK3CA were the most common mutated genes in this series. Interestingly, possible actionable mutations in ERRB2 were found in 5 tumors, but no TP53 mutations were detected. MMRD was associated with younger age and increased tumor-infiltrating lymphocytes. Universal screening in EOC and mixed EOC/CCC is recommended for the high frequency of MMRD detected; however, for CCC, additional clinical and pathologic criteria should be evaluated to help select cases for analysis.
Endometrioid ovarian carcinoma (EOC) has clinical and biological differences compared with other histologic types of ovarian carcinomas, but it shares morphologic and molecular features with endometrioid endometrial carcinoma. To analyze the molecular heterogeneity of EOC according to the new molecular classification of endometrial cancer and to evaluate the prognostic significance of this molecular classification, we have analyzed 166 early-stage EOC by immunohistochemistry for mismatch repair proteins and p53 expression, and by Sanger sequencing for the exonuclease domain of polymerase epsilon (POLE EDM). In addition, we have carried out next-generation sequencing analysis of tumors with POLE EDM mutations to confirm the ultramutated profile. Eight tumors carried POLE EDM mutations and were classified as ultramutated (5%), 29 showed mismatch repair deficiency and were classified as hypermutated (18%), 16 tumors had a mutated pattern of p53 expression and were classified as p53 abnormal (11%), and 114 tumors did not have any of the previous alterations and were classified as no specific type (66%). Five tumors showed >1 classification criteria. The frequencies of ultramutated and hypermutated tumors were lower in EOC compared with the frequency reported in endometrial cancer. Subrogate molecular groups differed in both morphologic features (histologic grade, squamous and morular metaplasia, and necrosis) and immunohistochemical expression of several biomarkers (ARID1A, nuclear β-catenin, estrogen receptors, Napsin A, and HINF1B). In addition, the number of CD8+ tumor-infiltrating lymphocytes was higher in ultramutated and hypermutated tumors. The most commonly mutated genes in the ultramutated group were ARID1A (100%), PIK3R1, PTEN, BCOR, and TP53 (67% each), whereas no mutations were detected in KRAS. Although the prognosis did not differ among subgroups in the multivariate analysis, a trend toward a better prognosis in POLE-mutated and a worse prognosis in p53 abnormal tumors was observed. In addition, this classification could have important therapeutic implications for the use of immunotherapy in tumors classified as ultramutated and hypermutated.
Background: Characterisation of molecular alterations of pleomorphic lobular carcinoma (PLC), an aggressive subtype of invasive lobular carcinoma (ILC), have not been yet completely accomplished. Methods: To investigate the molecular alterations of invasive lobular carcinoma with pleomorphic features, a total of 39 tumour samples (in situ and invasive lesions and lymph node metastases) from 27 patients with nuclear grade 3 invasive lobular carcinomas were subjected to morphological, immunohistochemical and massive parallel sequencing analyses. Results: Our observations indicated that invasive lobular carcinomas with pleomorphic features were morphologically and molecularly heterogeneous. All cases showed absence or aberrant expression of E-cadherin and abnormal expression of β-catenin and p120. CDH1 (89%), PIK3CA (33%) and ERRB2 (26%) were the most common mutated genes. ERBB2 mutations preferentially affected the tyrosine-kinase activity domain, being the most frequent the targetable mutation p.L755S (57%). We also observed higher frequency of mutations in ARID1B, KMT2C, MAP3K1, TP53 and ARID1A in PLC than previously reported in classic ILC. Alterations related to progression from in situ to invasive carcinoma and/or to lymph node metastases included TP53 mutation, amplification of PIK3CA and CCND1 and loss of ARID1A expression. Conclusions: The high frequency of ERBB2 mutations observed suggests that ERBB2 mutation testing should be considered in all invasive lobular carcinomas with nuclear grade 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.