The serine/threonine PP-1c (protein phosphatase-1 catalytic subunit) is regulated by association with multiple regulatory subunits. Human ASPPs (apoptosis-stimulating proteins of p53) comprise three family members: ASPP1, ASPP2 and iASPP (inhibitory ASPP), which is uniquely overexpressed in many cancers. While ASPP2 and iASPP are known to bind PP-1c, we now identify novel and distinct molecular interactions that allow all three ASPPs to bind differentially to PP-1c isoforms and p53. iASPP lacks a PP-1c-binding RVXF motif; however, we show it interacts with PP-1c via a RARL sequence with a Kd value of 26 nM. Molecular modelling and mutagenesis of PP-1c-ASPP protein complexes identified two additional modes of interaction. First, two positively charged residues, Lys260 and Arg261 on PP-1c, interact with all ASPP family members. Secondly, the C-terminus of the PP-1c α, β and γ isoforms contain a type-2 SH3 (Src homology 3) poly-proline motif (PxxPxR), which binds directly to the SH3 domains of ASPP1, ASPP2 and iASPP. In PP-1cγ this comprises residues 309-314 (PVTPPR). When the Px(T)PxR motif is deleted or mutated via insertion of a phosphorylation site mimic (T311D), PP-1c fails to bind to all three ASPP proteins. Overall, we provide the first direct evidence for PP-1c binding via its C-terminus to an SH3 protein domain.
Highlights d iASPP binds PP1 through multiple contacts involving RVxF, PxxPxR, and SILK motifs d In solution, ASPP-PP1 samples extended states via release of individual motifs d ASPP facilitates PP1 dephosphorylation of p53 pSer15 d Model proposed for targeting of PP1 substrates by ASPP SH3 domain
Flaviviruses depend on multiple host pathways during their life cycles and have evolved strategies to avoid the innate immune response. Previously, we showed that the West Nile virus capsid protein plays a role in this process by blocking apoptosis. In this study, we examined how expression of capsid proteins from several flaviviruses affects apoptosis and other host processes that impact virus replication. All of the tested capsid proteins protected cells from Fas-dependent apoptosis through a mechanism that requires activated Akt. Capsid expression upregulated other Akt-dependent cellular processes including expression of glucose transporter 1 and mitochondrial metabolism. Protein phosphatase 1, which is known to inactivate Akt, was identified as a DENV capsid interacting protein. This suggests that DENV capsid expression activates Akt by sequestering phosphatases that downregulate phospho-Akt. Capsid-dependent upregulation of Akt would enhance downstream signalling pathways that affect cell survival and metabolism, thus providing a favourable environment for virus replication.
Background: Lipin-1 functions as a phosphatidate phosphatase in glycerolipid synthesis and as a co-transcriptional regulator. Results: Lipin-1 contains conserved N-terminal motifs, which when mutated decrease phosphatase activity, nuclear localization, and binding to protein phosphatase-1c␥. Conclusion: The lipin-1 N-terminal domain is important in regulating its activities. Significance: Lipin-1 binds to protein phosphatase-1c␥ through its N-terminal domain, and this potentially regulates lipin-1 localization and function.
Objective Vitrification of articular cartilage (AC) is a promising technique which may enable long-term tissue banking of AC allografts. We previously developed a 2-step, dual-temperature, multi-cryoprotectant agent (CPA) loading protocol to cryopreserve particulated AC (1 mm3 cubes). Furthermore, we also determined that the inclusion of ascorbic acid (AA) effectively mitigates CPA toxicity in cryopreserved AC. Prior to clinical translation, chondrocytes must remain viable after tissue re-warming and before transplantation. However, the effects of short-term hypothermic storage of particulated AC after vitrification and re-warming are not documented. This study evaluated the chondrocyte viability of post-vitrified particulated AC during a 7-day tissue storage period at 4 °C. We hypothesized that porcine particulated AC could be stored for up to 7 days after successful vitrification without significant loss of cell viability, and these results would be enhanced when cartilage is incubated in storage medium supplemented with clinical grade AA. Design Three experimental groups were examined at 5 time points: a fresh control (only incubated in medium), a vitrified − AA group, and a vitrified + AA group ( N = 7). Results There was a mild decline in cell viability but both treatment groups maintained a viability of greater than 80% viable cells which is acceptable for clinical translation. Conclusion We determined that particulated AC can be stored for up to 7 days after successful vitrification without a clinically significant decline in chondrocyte viability. This information can be used to guide tissue banks regarding the implementation of AC vitrification to increase cartilage allograft availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.