The complete understanding of the genomic contribution to complex traits, diseases, and response to treatments, as well as genomic medicine application to the well-being of all humans will be achieved through the global variome that encompasses fine-scale genetic diversity. Despite significant efforts in recent years, uneven representation still characterizes genomic resources and among the underrepresented European populations are the Western Balkans including the Serbian population. Our research addresses this gap and presents the first ever targeted sequencing dataset of variants in clinically relevant genes. By measuring population differentiation and applying the Principal Component and Admixture analysis we demonstrated that the Serbian population differs little from other European populations, yet we identified several novel and more frequent variants that appear as its unique genetic determinants. We explored thoroughly the functional impact of frequent variants and its correlation with the health burden of the population of Serbia based on a sample of 144 individuals. Our variants catalogue improves the understanding of genetics of modern Serbia, contributes to research on ancestry, and aids in improvements of well-being and health equity. In addition, this resource may also be applicable in neighboring regions and valuable in worldwide functional analyses of genetic variants in individuals of European descent.
The complete understanding of the genomic contribution to complex traits, diseases, and response to treatments, as well as genomic medicine application to the well-being of all humans will be achieved through the global variome that encompasses fine-scale genetic diversity. Despite significant efforts in recent years, uneven representation still characterizes genomic resources and among the underrepresented European populations are the Western Balkans including the Serbian population. Our research addresses this gap and presents the first ever dataset of variants in clinically relevant genes in the population sample of contemporary Serbia. A few variants significantly more frequent in the analyzed sample population compared to the European population as a whole are distinguished as its unique genetic determinants. We explored thoroughly their potential functional impact and its correlation with the health burden of the population of Serbia. Our variant’s catalogue improves the understanding of genetics of modern Serbia, contributes to application of precision medicine and health equity. In addition, this resource may also be applicable in neighboring regions and in worldwide functional analyses of genetic variants in individuals of European descent.
For the last couple of decades, there has been a significant growth in sequencing data, leading to an extraordinary increase in the number of gene variants. This places a challenge on the bioinformatics research community to develop and improve computational tools for functional annotation of new variants. Genes coding for epigenetic regulators have important roles in cancer pathogenesis and mutations in these genes show great potential as clinical biomarkers, especially in hematologic malignancies. Therefore, we developed a model that specifically focuses on these genes, with an assumption that it would outperform general models in predicting the functional effects of amino acid substitutions. EpiMut is a standalone software that implements a sequence based alignment-free method. We applied a two-step approach for generating sequence based features, relying on the biophysical and biochemical indices of amino acids and the Fourier Transform as a sequence transformation method. For each gene in the dataset, the machine learning algorithm–Naïve Bayes was used for building a model for prediction of the neutral or disease-related status of variants. EpiMut outperformed state-of-the-art tools used for comparison, PolyPhen-2, SIFT and SNAP2. Additionally, EpiMut showed the highest performance on the subset of variants positioned outside conserved functional domains of analysed proteins, which represents an important group of cancer-related variants. These results imply that EpiMut can be applied as a first choice tool in research of the impact of gene variants in epigenetic regulators, especially in the light of the biomarker role in hematologic malignancies. EpiMut is freely available at https://www.vin.bg.ac.rs/180/tools/epimut.php.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.