The results of this study may prove useful to crane cabin designers in eliminating anthropometric inconsistencies and improving the health of operators, but can also aid in improving the safety, performance and financial results of the companies where crane cabins operate.
Welded joints are analysed as critical regions in a pressure vessel in respect to structural failure due to the elastic-plastic fracture/crack growth. To assess structural integrity of pressure vessels used in chemical industry the risk based procedure has been introduced and applied in the case of a large spherical pressure vessel used as a vinyl-chloride monomer (VCM) storage tank in HIP Azotara Pancevo. The risk matrix has been used, taking into account the basic definition of risk, being the product of the probability and consequence, and applied to different regions of welded joints, having different mechanical properties, i.e. crack resistance. To estimate probability, the failure assessment diagram (FAD) has been used, as an engineering tool, defined according to the position of the operating point for different regions of the welded joint, relative to the critical point on the limit curve. Generally speaking, consequence is estimated based on pressure vessel parameters, or by detailed analysis of health, safety, business and security issues, but in the analysed case, the worst case scenario is assumed, with the highest consequence due to potential disaster for environment and fatalities. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 33044 and Grant no. 35017]
Purpose of this paper is application of method based on multivariate statistical technique in order to determine critical dimensions of the crane cabin, which would maximize adjustability and ergonomics of the product, resulting in accommodation of wider range of the population and greater safety while operating. Multivariate statistical technique used for this purpose is factor analysis. Results of this research, conducted on a sample consisted of 83 crane cabin operators, showed that while designing a working space critical anthropomeasures take three-dimensional space, while theirinfluence contributions in each dimension are determined with factor analysis. Results of this work are expected to be useful for industry in a way such that crane cabins' designers can troubleshoot the dilemmas they encounter in their job. Using findings of this survey might lead to new designs of cabins that will offer less strenuous postures of operator, which consequently will improve productivity and safety.
Procedures in the development process of crane cabins are arbitrary and subjective. Since approximately 42% of incidents in the construction industry are linked to them, there is a need to collect fresh anthropometric data and provide additional recommendations for design. In this paper, dimensioning of the crane cabin interior space was carried out using a sample of 64 crane operators' anthropometric measurements, in the Republic of Serbia, by measuring workspace with 10 parameters using nine measured anthropometric data from each crane operator. This paper applies experiments run via full factorial designs using a combined traditional and Taguchi approach. The experiments indicated which design parameters are influenced by which anthropometric measurements and to what degree. The results are expected to be of use for crane cabin designers and should assist them to design a cabin that may lead to less strenuous sitting postures and fatigue for operators, thus improving safety and accident prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.