Wnt signaling is one of a handful of powerful signaling pathways that play crucial roles in the animal life by controlling the genetic programs of embryonic development and adult homeostasis. When disrupted, these signaling pathways cause developmental defects, or diseases, among them cancer. The gateway of the canonical Wnt pathway, which contains >100 genes, is an essential molecule called -catenin (Armadillo in Drosophila).
Conditional loss-and gain-of-function mutations of -
We report new functions of the cell-adhesion molecule E-cadherin in murine pluripotent cells. E-cadherin is highly expressed in mouse embryonic stem cells, and interference with E-cadherin causes differentiation. During cellular reprogramming of mouse fibroblasts by OCT4, SOX2, KLF4 and c-MYC, fully reprogrammed cells were exclusively observed in the E-cadherinpositive cell population and could not be obtained in the absence of E-cadherin. Moreover, reprogrammed cells could be established by viral E-cadherin in the absence of exogenous OCT4. Thus, reprogramming requires spatial cues that cross-talk with essential transcription factors. The cell-adhesion molecule E-cadherin has important functions in pluripotency and reprogramming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.