Recently, a large number of surgical studies based on the objective evaluation of EOR have been published, suggesting that EOR has a significant effect not only on the rate of tumor progression and OS but also on the decrease Object. A growing number of published studies have recently demonstrated the role of resection in overall survival (OS) for patients with gliomas. In this retrospective study, the authors objectively investigated the role of the extent of resection (EOR) in OS in patients with low-grade gliomas (LGGs).Methods. Between 1998 and 2011, 190 patients underwent surgery for LGGs. All surgical procedures were conducted under corticosubcortical stimulation. The EOR was established by analyzing the pre-and postoperative volumes of the gliomas on T2-weighted MRI studies. The difference between the preoperative tumor volumes was also investigated by measuring the volumetric difference between the T2-and T1-weighted MRI images (DVT2T1) to evaluate how the diffusive tumor-growing pattern affected the EOR achieved.Results. The median preoperative tumor volume was 55 cm 3 , and in almost half of the patients the EOR was greater than 90%. In this study, patients with an EOR of 90% or greater had an estimated 5-year OS rate of 93%, those with EOR between 70% and 89% had a 5-year OS rate of 84%, and those with EOR less than 70% had a 5-year OS rate of 41% (p < 0.001). New postoperative deficits were noted in 43.7% of cases, while permanent deficits occurred in 3.16% of cases. There were 41 deaths (21.6%), and the median follow-up was 4.7 years.A further volumetric analysis was also conducted to compare 2 different intraoperative protocols (Series 1 [intraoperative electrical stimulation alone] vs Series 2 [intraoperative stimulation plus overlap of functional MRI/fiber tracking diffusion tensor imaging data on a neuronavigation system]). Patients in Series 1 had a median EOR of 77%, while those in Series 2 had a median EOR of 90% (p = 0.0001). Multivariate analysis showed that OS is influenced not only by EOR (p = 0.001) but also by age (p = 0.003), histological subtype (p = 0.005), and the DVT2T1 value (p < 0.0001). Progression-free survival is similarly influenced by histological subtype (fibrillary astrocytoma, p = 0.003), EOR (p < 0.0001), and DVT2T1 value (p < 0.0001), as is malignant progression-free survival (p = 0.003, p < 0.0001, and p < 0.0001, respectively). Finally, the study shows that the higher the DVT2T1 value, the less extensive the currently possible resection, highlighting an apparent correlation between the DVT2T1 value itself and EOR (p < 0.0001).Conclusions. The EOR and the DVT2T1 values are the strongest independent predictors in improving OS as well as in delaying tumor progression and malignant transformation. Furthermore, the DVT2T1 value may be useful as a predictive index for EOR. Finally, due to intraoperative corticosubcortical mapping and the overlap of functional data on the neuronavigation system, major resection is possible with an acceptable risk and a significant increase ...
A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.
The invasion properties of glioblastoma hamper a radical surgery and are responsible for its recurrence. Understanding the invasion mechanisms is thus critical to devise new therapeutic strategies. Therefore, the creation of in vitro models that enable these mechanisms to be studied represents a crucial step. Since in vitro models represent an over-simplification of the in vivo system, in these years it has been attempted to increase the level of complexity of in vitro assays to create models that could better mimic the behaviour of the cells in vivo. These levels of complexity involved: 1. The dimension of the system, moving from two-dimensional to three-dimensional models; 2. The use of microfluidic systems; 3. The use of mixed cultures of tumour cells and cells of the tumour micro-environment in order to mimic the complex cross-talk between tumour cells and their micro-environment; 4. And the source of cells used in an attempt to move from commercial lines to patient-based models. In this review, we will summarize the evidence obtained exploring these different levels of complexity and highlighting advantages and limitations of each system used.
Background: Translational medicine aims at transferring advances in basic science research into new approaches for diagnosis and treatment of diseases. Low-grade gliomas (LGG) have a heterogeneous clinical behavior that can be only partially predicted employing current state-of-theart markers, hindering the decision-making process. To deepen our comprehension on tumor heterogeneity, we dissected the mechanism of interaction between tumor cells and relevant components of the neoplastic environment, isolating, from LGG and high-grade gliomas (HGG), proliferating stem cell lines from both the glioma stroma and, where possible, the neoplasm. Methods and Findings: We isolated glioma-associated stem cells (GASC) from LGG (n540) and HGG (n573). GASC showed stem cell features, anchorage-independent growth, and supported the malignant properties of both A172 cells and human glioma-stem cells, mainly through the release of exosomes. Finally, starting from GASC obtained from HGG (n513) and LGG (n512) we defined a score, based on the expression of 9 GASC surface markers, whose prognostic value was assayed on 40 subsequent LGG-patients. At the multivariate Cox analysis, the GASCbased score was the only independent predictor of overall survival and malignant progression free-survival. Conclusions: The microenvironment of both LGG and HGG hosts non-tumorigenic multipotent stem cells that can increase in vitro the biological aggressiveness of gliomainitiating cells through the release of exosomes. The clinical importance of this finding is supported by the strong prognostic value associated with the characteristics of GASC. This patientbased approach can provide a groundbreaking method to predict prognosis and to exploit novel strategies that target the tumor stroma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.