The Toolbox implementation for removal of antipersonnel mines, submunitions and unexploded ordnance (TIRAMISU) Advanced Intelligence Decision Support System is an operational system proposed to Mine Action Centres worldwide for conducting non-technical surveys in humanitarian demining. The system consists of three modules, one of which is the module for data acquisition introduced and described in this study. The module has been designed, produced, improved, used and operationally tested and validated on several platforms (helicopters, remotely piloted aircraft systems (RPAS) and a blimp), with various sensors and acquisition units (Global Positioning System (GPS) and inertial measurement unit) in a variety of combinations for additional data acquisition from deep inside a suspected hazardous area. For the purposes of aerial data acquisition over a suspected hazardous area, the use of multiple sensors such as visible digital cameras and multi-spectral visible, near infrared (VNIR), hyperspectral VNIR and thermal infrared sensors are of benefit, because they display the scene in different ways. Off-the-shelf equipment and software were mostly used, but some specific equipment, such as sensor pods, was developed and also some software solutions for data acquisition and pre-processing (transforming hyperspectral line scanner data into hyperspectral images, and producing hyperspectral cubes). The technical stability and robustness of the module were confirmed by operationally testing and evaluating the systems on the aforementioned platforms and missions in several actual suspected hazardous areas in Croatia and Bosnia and Herzegovina, between 2001 and 2015.
Abstract. Digital Surface Models (DSM) generated by image-based scene reconstruction from Unmanned Aerial Vehicle (UAV) and Terrestrial Laser Scanning (TLS)point clouds are highly distinguished in terms of resolution and accuracy. This leads to a situation where users have to choose the most beneficial product to fulfill their needs. In the current study, these techniques no longer compete but complement each other. Experiments were implemented to verify the improvement of vertical accuracy by introducing different amounts and configurations of Terrestrial Laser scans in the photogrammetric Structure from Motion (SfM) workflow for high-resolution 3D-scene reconstruction. Results show that it is possible to significantly improve (∼ 49% ) the vertical accuracy of DSMs by introducing a TLS point clouds. However, accuracy improvement is highly associated with the number of introduced Ground Control Points (GCP) in the SfM workflow procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.