A gene in Legionella pneumophila that has significant homology to published hfq genes demonstrated regulation by RpoS and the transcriptional regulator LetA. Additionally, Hfq has a positive effect on the presence of transcripts of the genes for CsrA and the ferric uptake regulator Fur. Mutants lacking hfq demonstrate defects in growth and pigmentation and slight defects in virulence in both amoeba and macrophage infection models. Hfq appears to play a major role in exponential-phase regulatory cascades of L. pneumophila.
The virulence of Francisella tularensis LVS is determined in part by its ability to invade and replicate within macrophages and stimulate the production of inflammatory cytokines. The present study determined the effects of growing F. tularensis in macrophages on its ability to stimulate cytokine secretion by macrophages. F. tularensis grown in Mueller Hinton broth (FtB) stimulated the secretion of large amounts of TNF-α, IL-12p40, IL-6 and MCP-1/CCL2 when incubated with macrophages overnight. In contrast, F. tularensis released from infected macrophages (FtMac) stimulated very little secretion of these cytokines by primary cultures of murine peritoneal macrophages, human monocytes or macrophage cell lines. Stimulation of nitric oxide production by FtMac was also less than that elicited by FtB. FtMac killed with gentamicin or paraformaldehyde also stimulated low levels of cytokine secretion. FtMac recovered the ability to stimulate cytokine secretion after overnight culture in broth. Infection of macrophages with FtMac inhibited the cytokine response to subsequent stimulation with LPS from E. coli but did not affect Fcγ receptor-mediated phagocytosis. FtMac were ingested by macrophages at about half the rate of FtB however this did not account for the lower cytokine secretion. FtMac and FtB replicated at similar rates within macrophages. Finally, Mice infected with FtMac had a higher mortality rate than those infected with FtB. These results reveal that growth in macrophages causes a reversible phenotypic change in F. tularensis that is associated with decreased stimulation of cytokine secretion, inhibition of LPS-stimulated secretion of inflammatory cytokines by macrophages and increased lethality in mice.
Legionella pneumophila possesses a variety of secreted and cell-associated hydrolytic activities that could be involved in pathogenesis. The activities include phospholipase A, lysophospholipase A, glycerophospholipid: cholesterol acyltransferase, lipase, protease, phosphatase, RNase, and p-nitrophenylphosphorylcholine (p-NPPC) hydrolase. Up to now, there have been no data available on the regulation of the enzymes in L. pneumophila and no data at all concerning the regulation of bacterial phospholipases A. Therefore, we used L. pneumophila mutants in the genes coding for the global regulatory proteins RpoS and LetA to investigate the dependency of hydrolytic activities on a global regulatory network proposed to control important virulence traits in L. pneumophila. Our results show that both L. pneumophila rpoS and letA mutants exhibit on the one hand a dramatic reduction of secreted phospholipase A and glycerophospholipid: cholesterol acyltransferase activities, while on the other hand secreted lysophospholipase A and lipase activities were significantly increased during late logarithmic growth phase. The cell-associated phospholipase A, lysophospholipase A, and p-NPPC hydrolase activities, as well as the secreted protease, phosphatase, and p-NPPC hydrolase activities were significantly decreased in both of the mutant strains. Only cell-associated phosphatase activity was slightly increased. In contrast, RNase activity was not affected. The expression of plaC, coding for a secreted acyltransferase, phospholipase A, and lysophospholipase A, was found to be regulated by LetA and RpoS. In conclusion, our results show that RpoS and LetA affect phospholipase A, lysophospholipase A, acyltransferase, and other hydrolytic activities of L. pneumophila in a similar way, thereby corroborating the existence of the LetA/RpoS regulation cascade.Legionella pneumophila is an intracellular bacterial pathogen which infects protozoa, such as amoebae, present in fresh water sources. When inhaled by susceptible humans, the bacteria infect and multiply in human lung macrophages and cause the potentially fatal pneumonia Legionnaires' disease (20). When nutrients become rare after replication in a modified phagosome (1), L. pneumophila exits the spent host cell by disruption of the eukaryotic phagosomal and cell membranes and infects a new host (49, 67). Accordingly, the life cycle of L. pneumophila can be differentiated into two phases where the bacterium needs to adapt to specific conditions: intracellular replication within the host cell and host cell exit and transmission to a new host (50). Furthermore, it was shown that L. pneumophila develops a mature infectious form that is different from in vitro grown stationary phase cells with regard to infectivity and resistance to antibiotics (30).Adaptation between replicative and transmissive phases in L. pneumophila is strictly regulated on the genetic level. Virulence properties such as motility (8,14,36,37), cytotoxicity (2,14,33), and resistance to stress such as nutrient limitatio...
Francisella tularensis is an environmental bacterium capable of infecting a wide spectrum of species from mammals and birds to reptiles. It has been demonstrated that F. tularensis can invade and survive within protozoa, but an association with aquatic insects has not been thoroughly investigated. We examined the interaction of F. tularensis LVS biofilms and Culex quinquefasciatus larvae to determine the effects on larvae and adults. Our results demonstrate that F. tularensis LVS can form and persist as biofilms in natural water and that the mosquito larvae of C. quinquefasciatus readily feed on biofilm and planktonic forms of F. tularensis LVS. Larvae raised in both bacteria-only cultures suffered significant delays in pupation. Adults resulting from larvae continuously exposed to the bacteria had significantly reduced wing lengths in males and fecundity of both sexes. The bacteria may be exerting these effects through localization and persistence within the midgut and Malpighian tubule cells of the larvae. The study of oral acquisition of pathogens by insect larvae can significantly contribute to the study of environmental persistence of pathogens. We show that oral uptake of F. tularensis LVS by C. quinquefasciatus larvae results in not only larval effects but also has effects on adult mosquitoes. These effects are important in understanding both the ecology of tularemia as well as bacterial interactions with aquatic invertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.