SummaryThe Yellow Stripe-Like (YSL) family of proteins has been identified based on sequence similarity to maize Yellow Stripe1 (YS1), the transporter responsible for the primary uptake of iron from the soil. YS1 transports iron that is complexed by specific plant-derived Fe(III) chelators called phytosiderophores (PS). Non-grass species of plants neither make nor use PS, yet YSL family members are found in non-grass species (monocot, dicot, gymnosperm, and moss species) including Arabidopsis thaliana. YSLs in non-grasses have been hypothesized to transport metals complexed by nicotianamine (NA), an iron chelator that is structurally similar to PS and which is found in all higher plants. Here we show that Arabidopsis YSL2 (At5g24380) transports iron and copper when these metals are chelated by NA. YSL2 is expressed in many cell types in both roots and shoots, suggesting that diverse cell types obtain metals as metal-NA complexes. YSL2 transcription is regulated by the levels of iron and copper in the growth medium. Based on its expression pattern, a major function of the YSL2 appears to be in the lateral movement of metals in the vasculature.
A case of subcutaneous phaeohyphomycosis in a human, involving the ankle and caused by Scytalidium lignicola, is described. The isolate was found to be sensitive to amphotericin B, 5-fluorocytosine, miconazole, and ketoconazole in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.