in the area. In addition, the review will discuss and critique various breath sampling methods for off-line breath analysis. Methods Literature search was carried out in databases MEDLINE, BIOSIS, EMBASE, INSPEC, COMPENDEX, PQSCITECH, and SCISEARCH using the STN platform which delivers peer-reviewed articles. Keywords searched for include breath, sampling, collection, pre-concentration, volatile. Forward and reverse search was then performed on initially included articles. The breath collection methodologies of all included articles was subsequently reviewed. Results Sampling methods differs between research groups, for example regarding the portion of breath being targeted. Definition of late expiratory breath varies between studies. Conclusions Breath analysis is an interdisciplinary field of study using clinical, analytical chemistry, data processing, and metabolomics expertise. A move towards standardisation in breath sampling is currently being promoted within the breath research community with a view to harmonising analysis and thereby increasing robustness and inter-laboratory comparisons.
There is a need for biological markers of the acute respiratory distress syndrome (ARDS). Exhaled breath contains hundreds of metabolites in the gas phase, some of which reflect (patho)physiological processes. We aimed to determine the diagnostic accuracy of metabolites in exhaled breath as biomarkers of ARDS.Breath from ventilated intensive care unit patients (n5101) was analysed using gas chromatography and mass spectrometry during the first day of admission. ARDS was defined by the Berlin definition. Training and temporal validation cohorts were used.23 patients in the training cohort (n553) had ARDS. Three breath metabolites, octane, acetaldehyde and 3-methylheptane, could discriminate between ARDS and controls with an area under the receiver operating characteristic curve (AUC) of 0.80. Temporal external validation (19 ARDS cases in a cohort of 48) resulted in an AUC of 0.78. Discrimination was insensitive to adjustment for severity of disease, a direct or indirect cause of ARDS, comorbidities, or ventilator settings. Combination with the lung injury prediction score increased the AUC to 0.91 and improved net reclassification by 1.17.Exhaled breath analysis showed good diagnostic accuracy for ARDS, which was externally validated. These data suggest that exhaled breath analysis could be used for the diagnostic assessment of ARDS. @ERSpublications Metabolites in the breath of ventilated patients may be used to diagnose the acute respiratory distress syndrome
Heart rate patterns can be accurately characterized with a new developed curve-fitting algorithm. Heart rate changes can also be used for automatic detection of seizures in patients with severe epilepsy if the model parameters are chosen according to predefined characteristics of the patient.
With heightened global concern of microbial drug resistance, advanced methods for early and accurate diagnosis of infection are urgently needed. Analysis of exhaled breath volatile organic compounds (VOCs) toward detecting microbial infection potentially allows a highly informative and noninvasive alternative to current genomics and culture-based methods. We performed a systematic review of research literature reporting human and animal exhaled breath VOCs related to microbial infections. In this Review, we find that a wide range of breath sampling and analysis methods are used by researchers, which significantly affects interstudy method comparability. Studies either perform targeted analysis of known VOCs relating to an infection, or non-targeted analysis to obtain a global profile of volatile metabolites. In general, the field of breath analysis is still relatively immature, and there is much to be understood about the metabolic production of breath VOCs, particularly in a host where both commensal microflora as well as pathogenic microorganisms may be manifested in the airways. We anticipate that measures to standardize high throughput sampling and analysis, together with an increase in large scale collaborative international trials, will bring routine breath VOC analysis to improve diagnosis of infection closer to reality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.