Designing new functional materials is crucial for the development of efficient energy storage and conversion devices such as all solid‐state batteries. LiBH4 is a promising solid electrolyte for Li‐ion batteries. It displays high lithium mobility, although only above 110 °C at which a transition to a high temperature hexagonal structure occurs. Herein, it is shown that confining LiBH4 in the pores of ordered mesoporous silica scaffolds leads to high Li+ conductivity (0.1 mS cm−1) at room temperature. This is a surprisingly high value, especially given that the nanocomposites comprise 42 vol% of SiO2. Solid state 7Li NMR confirmed that the high conductivity can be attributed to a very high Li+ mobility in the solid phase at room temperature. Confinement of LiBH4 in the pores leads also to a lower solid‐solid phase transition temperature than for bulk LiBH4. However, the high ionic mobility is associated with a fraction of the confined borohydride that shows no phase transition, and most likely located close to the interface with the SiO2 pore walls. These results point to a new strategy to design low‐temperature ion conducting solids for application in all solid‐state lithium ion batteries, which could enable safe use of Li‐metal anodes.
Magnesium dihydride contains 7.7 wt % hydrogen. However, its application for hydrogen storage is impeded by its high stability and slow kinetics. Bringing the size of Mg(H 2 ) into the nanometer range will not only enhance the reaction rates but has also been theoretically predicted to change the thermodynamic stability and destabilize the MgH 2 with respect to Mg. However, the preparation of such small particles is a major challenge. We identified a method to prepare large amounts of nanometersized nonoxidized magnesium crystallites. The method is based on infiltration of nanoporous carbon with molten magnesium. The size of the Mg crystallites is directly influenced by the pore size of the carbon and can be varied from 2-5 to less than 2 nm. The majority of the nanocrystallites is not oxidized after preparation. No bulk magnesium was detected in the samples with nanoparticle loadings up to 15 wt % on carbon. These 3D supported nanomaterials present interesting systems to study how nanosizing and support interaction can steer the hydrogen sorption properties of metal hydrides.
The rapidly expanding toolbox for design and preparation is a major driving force for the advances in nanomaterials science and technology. Melt infiltration originates from the field of ceramic nanomaterials and is based on the infiltration of porous matrices with the melt of an active phase or precursor. In recent years, it has become a technique for the preparation of advanced materials: nanocomposites, pore-confined nanoparticles, ordered mesoporous and nanostructured materials. Although certain restrictions apply, mostly related to the melting behavior of the infiltrate and its interaction with the matrix, this review illustrates that it is applicable to a wide range of materials, including metals, polymers, ceramics, and metal hydrides and oxides. Melt infiltration provides an alternative to classical gas-phase and solution-based preparation methods, facilitating in several cases extended control over the nanostructure of the materials. This review starts with a concise discussion on the physical and chemical principles for melt infiltration, and the practical aspects. In the second part of this contribution, specific examples are discussed of nanostructured functional materials with applications in energy storage and conversion, catalysis, and as optical and structural materials and emerging materials with interesting new physical and chemical properties. Melt infiltration is a useful preparation route for material scientists from different fields, and we hope this review may inspire the search and discovery of novel nanostructured materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.