Carbon cryogel/ceria composite, with 10 wt.% of ceria, was synthesized by mixing of ceria and carbon cryogel (CC). The sample was characterized by field emission scanning electron microscopy, nitrogen adsorption and X-ray diffraction. The adsorption of arsenic(III) ions from aqueous solutions on carbon cryogel/ceria nanocomposite was studied as a function of time, solution pH and As(III) ion concentration. The results are correlated with previous investigations of adsorption mechanism of arsenic(III) on carbon cryogel. Adsorption dose experiments showed that the mass of the adsorbent was reduced for 20 times, in comparison with pure CC, for the same amount of adsorbed arsenic(III) ions. BET isotherm was used to interpret the experimental data for modelling liquid phase adsorption.
In this study, the influence of boron doping on structural and surface properties of carbon material synthesized by hydrothermal method was investigated, and the obtained results were compared with the previously published influence that boron has on characteristics of carbonized boron-doped hydrothermal carbons (CHTCB). Hydrothermal carbons doped with boron (HTCB), were obtained by hydrothermal synthesis of glucose solution with the different nominal concentrations of boric acid. It was found that glucose based hydrothermal carbon does not have developed porosity, and the presence of boron in their structure has insignificant influence on it. On the contrary, additional carbonization increases the specific surface area of the undoped sample, while the increase in boron content drastically decreases specific surface area. Boron doping leads to a decrease in the amount of surface oxygen groups, for both, hydrothermally synthesized and additionally carbonized material. Raman analysis showed that boron content does not affect the structural arrangement of HTCB samples, and Raman structural parameters show higher degree of disorder, compared to the CHTCB samples. Comparison of structural and surface characteristics of hydrothermal carbons and carbonized materials contributes to the study of the so far, insufficiently clarified influence that boron incorporation has on the material characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.