Human leukocyte antigen-G (HLA-G) is a nonclassical class I major histocompatibility complex molecule which is induced at the course of inflammatory pathologies, and its expression has been suggested as a possible mechanism of tissue protection against autoimmune inflammatory responses, therefore acting as a mechanism of immune surveillance. We investigated the influence of the 14 bp polymorphism of the HLA-G gene on systemic lupus erythematosus (SLE) by analyzing 293 patients with SLE and 460 healthy controls. The patient's group was not in Hardy-Weinberg equilibrium, presenting an excess of heterozygotes (P = 0.014). The heterozygote group exhibited lower systemic lupus erythematosus disease activity indexes than the homozygous deletion group and the homozygous insertion group (mean value = 2.29 against 2.97 and 3.4, respectively, P = 0.035). Photosensitive patients showed a higher frequency of heterozygotes and an equivalent lower frequency of homozygotes for deletion; on the other hand, patients without arthritis presented a higher frequency of heterozygotes than the arthritis group and also a lower frequency of the del/del genotype. Overall, our results support the idea of a role of the HLA-G insertion/deletion polymorphism and therefore a role for the HLA-G molecule, on the pathology of SLE.
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease that affects several organs and systems. Its etiology remains unknown, although it is probably multifactorial. The human leukocyte antigen G (HLA-G) is a nonclassic major histocompatibility complex I molecule characterized by restricted expression and low DNA polymorphism. HLA-G plays a role in immunosuppression through different mechanisms. In inflammatory diseases, it has been postulated that HLA-G expression may be a possible mechanism of tissue protection against exacerbated inflammatory response. On the 3' untranslated region (3' UTR) of the HLA-G gene, there is an insertion/deletion polymorphism of 14 bp (rs1704) that was shown to influence the mRNA stability. The influence of this polymorphism in disease susceptibility is controversial. Also in the 3' UTR there is a single nucleotide polymorphism C/G (rs1063320) on the position +3142, at a possible binding site for microRNAs (miRNAs) and having an influence on miRNA affinity. In this study, we analyzed the +3142C>G and the 14 bp polymorphisms in 195 SLE European-derived female patients. Our findings show a significant increase of the +3142G allele frequency among patients as compared with controls (0.58 vs 0.47, P = 0.011). Also, patients presented a higher frequency of the GG genotype (OR = 1.90, 95% CI: 1.08-3.42). Double heterozygotes for the two polymorphisms presented a milder mean systemic lupus erythematosus disease activity index (SLEDAI) than heterozygotes for only one of the variants or non-heterozygous individuals (1.56 vs 3.15 and 3.26, respectively, corrected P = 0.044). These results suggest the involvement of the HLA-G molecule on SLE susceptibility and outcome.
This LANSS version was found to be a reliable instrument for the evaluation of pain complaints due to a variety of causes. The profile of pain scores was similar to that observed in other countries.
Susceptibility to systemic lupus erythematosus (SLE) is associated with genetic, hormonal, immunological, and environmental factors. Many genes have been related with the appearance of SLE, including several loci that code different complement components and their receptors. Some genetic deficiencies of complement molecules are strongly associated with SLE, probably because these deficiencies could cause decreased clearance of apoptotic cell material. As a consequence of the apoptotic material accumulation, high levels of autoantigens can be presented inappropriately to the immune system in an inflammatory context, resulting in an imbalance on the mechanisms of immunological tolerance, immune system activation, and autoantibody production. Recent studies proposed a role to the mannose-binding lectin (MBL) in the SLE physiopathogenesis. This protein activates the complement system, and the presence of several polymorphisms at the promoter and coding regions of the MBL-2 gene determines alterations at the plasma levels of MBL. Some of these polymorphisms have been associated with SLE susceptibility, as well as with clinical and laboratory typical features of this disease, cardiovascular events, and infections. Besides, it has been described that the presence of anti-MBL autoantibodies in sera of SLE patients can influence MBL plasma levels and its functional activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.