Acetaminophen (AAP) overdose can cause severe liver injury and liver failure in experimental animals and humans. Recently, several authors proposed that apoptosis might be a major mechanism of cell death after AAP treatment. To address this controversial issue, we evaluated a detailed time course of liver injury after AAP (300 mg/kg) in fasted C3Heb/FeJ mice. Apoptotic hepatocytes were quantified in H&E-stained liver sections using morphologic criteria (cell shrinkage, chromatin condensation and margination, and apoptotic bodies). The number of apoptotic hepatocytes remained at baseline (0.2 +/- 0.1 cells/10 high-power fields [HPF]) up to 2 h after AAP administration. However, between 3 and 24 h, apoptotic cell death increased significantly, e.g., 6.3 +/- 0.8 cells/10 HPF at 6 h. Despite the increase in the number of hepatocytes meeting the morphological criteria of apoptosis, this cell fraction remained well below 1% of all parenchymal cells. No evidence for caspase-3 processing or increase in enzyme activity was detected at any time. These results were compared to the overall percent of necrotic cells in liver sections. Confluent areas of centrilobular necrosis were estimated to involve 40-60% of all hepatocytes between 3 and 24 h after AAP administration. These numbers correlated with the increase in plasma alanine aminotransferase activities, which reached a peak level of 5900 +/- 1350 U/l at 24 h. A similar result was obtained with higher doses of AAP and with the use of fed animals. Thus, oncotic necrosis and not apoptosis is the principal mechanism of liver-cell death after AAP overdose in vivo.
Intracellular sources of peroxynitrite formation and potential targets for this powerful oxidant and nitrating agent have not been identified after acetaminophen (AAP) overdose. Therefore, we tested the hypothesis that peroxynitrite generated in mitochondria may be responsible for mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damage. C3Heb/FeJ mice were treated with 300 mg/kg AAP and monitored for up to 12 h. Loss of mtDNA (assayed by slot blot hybridization) and substantial nDNA fragmentation (evaluated by anti-histone enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and agarose gel electrophoresis) were observed as early as 3 h after AAP overdose. Analysis of nitrotyrosine protein adducts in subcellular fractions established that peroxynitrite was generated predominantly in mitochondria beginning at 1 h after AAP injection. Delayed treatment with a bolus dose of glutathione (GSH) accelerated the recovery of mitochondrial glutathione, which then effectively scavenged peroxynitrite. However, mtDNA loss was only partially prevented. Despite the absence of nitrotyrosine adducts in the nucleus after AAP overdose, nDNA damage was almost completely eliminated with GSH administration. A direct comparison of nDNA damage after AAP overdose with nDNA fragmentation during tumor necrosis factor receptor-mediated apoptosis showed similar DNA ladders on agarose gels but quantitatively different results in three other assays. We conclude that peroxynitrite may be partially responsible for mtDNA loss but is not directly involved in nDNA damage. In contrast, nDNA fragmentation after AAP overdose is not caused by caspase-activated DNase but most likely by other intracellular DNase(s), whose activation is dependent on the mitochondrial oxidant stress and peroxynitrite formation.
Peroxynitrite may be involved in acetaminophen-induced liver damage. However, it is unclear if peroxynitrite is generated in hepatocytes or in the vasculature. To address this question, we treated C3Heb/FeJ mice with 300 mg/kg acetaminophen and assessed nitrotyrosine protein adducts as indicator for peroxynitrite formation. Vascular nitrotyrosine staining was evident before liver injury between 0.5 and 2 h after acetaminophen treatment. However, liver injury developed parallel to hepatocellular nitrotyrosine staining between 2 and 6 h after acetaminophen. The mitochondrial content of glutathione disulfide, as indicator of reactive oxygen formation determined 6 h after acetaminophen, increased from 2.8 +/- 0.6% in controls to 23.5 +/- 5.1%. A high dose of allopurinol (100 mg/kg) strongly attenuated acetaminophen protein-adduct formation and prevented the mitochondrial oxidant stress and liver injury after acetaminophen. Lower doses of allopurinol, which are equally effective in inhibiting xanthine oxidase, were not protective and had no effect on nitrotyrosine staining and acetaminophen protein adduct formation. In vitro experiments showed that allopurinol is not a direct scavenger of peroxynitrite. We conclude that there is vascular peroxynitrite formation during the first 2 h after acetaminophen treatment. On the other hand, reactive metabolites of acetaminophen bind to intracellular proteins and cause mitochondrial dysfunction and superoxide formation. Mitochondrial superoxide reacts with nitric oxide to form peroxynitrite, which is responsible for intracellular protein nitration. The pathophysiological relevance of vascular peroxynitrite for hepatocellular peroxynitrite formation and liver injury remains to be established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.