The salinization of freshwaters is a global water quality problem that leads to the biological degradation of aquatic ecosystems. However, little is known about the spatial extent of freshwater salinization and the relative contribution of each human activity (e.g. agriculture, urbanization, mining or shale-gas extraction). Here, we investigated environmental factors that explain spatio-temporal patterns of water salinity and examined the causes, the extent and the degree of salinization of Spanish rivers. Results showed a strong variation in water salinity among river typologies and between river reaches in good and poor ecological status according to the Water Framework Directive. The variation in water salinity was largely explained by a combination of natural (i.e. climate and geology) and anthropogenic (i.e. land use) factors. By contrast, land use factors as urbanization and agriculture were the main drivers of salinization, which affected more than one quarter of the rivers and streams in Spain, especially those in the most arid regions (central and southern regions) and in the main courses of the largest rivers such as the Ebro, Douro and Tajo rivers. The information provided here can be relevant to set priority regions and actions to ameliorate freshwater salinization.
This article is part of the theme issue ‘Salt in freshwaters: causes, ecological consequences and future prospects’.
Large variability in dissolved organic carbon (DOC) uptake rates has been reported for headwater streams, but the causes of this variability are still not well understood. Here we assessed acetate uptake rates across 11 European streams comprising different ecoregions by using whole‐reach pulse acetate additions. We evaluated the main climatic and biogeochemical drivers of acetate uptake during two seasonal periods. Our results show a minor influence of sampling periods but a strong effect of climate and dissolved organic matter (DOM) composition on acetate uptake. In particular, mean annual precipitation explained half of the variability of the acetate uptake velocities (VfAcetate) across streams. Temperate streams presented the lowest VfAcetate, together with humic‐like DOM and the highest stream respiration rates. In contrast, higher VfAcetate were found in semiarid streams, with protein‐like DOM, indicating a dominance of reactive, labile compounds. This, together with lower stream respiration rates and molar ratios of DOC to nitrate, suggests a strong C limitation in semiarid streams, likely due to reduced inputs from the catchment. Overall, this study highlights the interplay of climate and DOM composition and its relevance to understand the biogeochemical mechanisms controlling DOC uptake in streams.
Coordinated distributed experiments (CDEs) enable the study of large-scale ecological patterns in geographically dispersed areas, while simultaneously providing broad academic and personal benefits for the participants. However, the effective involvement of early-career researchers (ECRs) presents major challenges. Here, we analyze the benefits and challenges of the first CDE exclusively led and conducted by ECRs (i.e. ECR-CDE), which sets a baseline for similar CDEs, and we provide recommendations for successful CDE execution. ECR-CDEs achieve most of the outcomes identified in conventional CDEs as well as extensive benefits for the young cohort of researchers, including: (i) receiving scientific credit, (ii) peer-training in new concepts and methods, (iii) developing leadership and communication skills, (iv) promoting a peer network among ECRs, and (v) building on individual engagement and independence. We also discuss the challenges of ECR-CDEs, which are mainly derived from the lack of independence and instability of the participants, and we suggest mechanisms to address them, such as resource reallocation and communication strategies. We conclude that ECR-CDEs can be a relevant tool to empower ECRs across disciplines by fostering their training, networking and personal well-being.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.