Microglia are tissue-resident macrophages of the CNS that orchestrate local immune responses and contribute to several neurological and psychiatric diseases. Little is known about human microglia and how they orchestrate their highly plastic, context-specific adaptive responses during pathology. Here we combined two high-dimensional technologies, single-cell RNAsequencing and time-of-flight mass cytometry, to identify microglia states in the human brain during homeostasis and disease. This approach enabled us to identify and characterize a previously unappreciated spectrum of transcriptional states in human microglia. These transcriptional states are determined by their spatial distribution, and they further change with aging and brain tumor pathology. This description of multiple microglia phenotypes in the human CNS may open promising new avenues for subset-specific therapeutic interventions.
Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by an expanded polyglutamine repeat in huntingtin (Htt) protein. Current management strategies temporarily relieve disease symptoms, but fail to affect the underlying disease progression. We previously demonstrated that calorie restriction ameliorated HD pathogenesis and slowed disease progression in HD mice1. We now report that overexpression of SIRT1, a mediator of beneficial metabolic effects of calorie restriction, protects neurons against mutant Htt toxicity, whereas reduction of SIRT1 exacerbates mutant Htt toxicity. Overexpression of SIRT1 significantly improves motor function, reduces brain atrophy, and attenuates mutant Htt-mediated metabolic abnormalities in both fragment and full-length HD mouse models. Further mechanistic studies suggest that SIRT1 prevents mutant Htt-induced decline in BDNF levels and its receptor Trk-B signaling, and restores medium spiny neuronal DARPP32 levels in the striatum. SIRT1 deacetylase activity is required for SIRT1-mediated neuroprotection in HD models. Notably, we demonstrate that mutant Htt interacts with SIRT1 and inhibits SIRT1 deacetylase activity. Inhibition of SIRT1 deacetylase activity results in hyperacetylation of SIRT1 substrates such as FOXO3a thereby inhibiting its prosurvival function. Overexpression of SIRT1 counteracts mutant Htt-induced deacetylase deficit, enhances deacetylation of FOXO3a, and facilitates cell survival. These findings demonstrate a neuroprotective role of SIRT1 in mammalian HD models, indicate key mediators of this protection, and open new avenues for the development of neuroprotective strategies in HD.
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
HDAC4 histone deacetylase is found to associate with huntingtin in a polyQ-length dependent manner. Reduction of HDAC4 levels in mouse models of Huntington's disease (HD) delays cytoplasmic aggregation in the brain and improves the molecular pathology of HD, providing a potential new therapeutic target.
Huntington disease (HD) is a devastating neurodegenerative disorder for which there are no disease-modifying treatments. Previous studies have proposed that activation of the heat shock response (HSR) via the transcription factor heat shock factor 1 (HSF1) may be of therapeutic benefit. However, the effect of disease progression on the HSR and the therapeutic potential of this pathway are currently unknown. Here, we used a brain-penetrating HSP90 inhibitor and physiological, molecular, and behavioral readouts to demonstrate that pharmacological activation of HSF1 improves huntingtin aggregate load, motor performance, and other HD-related phenotypes in the R6/2 mouse model of HD. However, the beneficial effects of this treatment were transient and diminished with disease progression. Molecular analyses to understand the transient nature of these effects revealed altered chromatin architecture, reduced HSF1 binding, and impaired HSR accompanied disease progression in both the R6/2 transgenic and HdhQ150 knockin mouse models of HD. Taken together, our findings reveal that the HSR, a major inducible regulator of protein homeostasis and longevity, is disrupted in HD. Consequently, pharmacological induction of HSF1 as a therapeutic approach to HD is more complex than was previously anticipated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.