In a seasonal world, organisms are continuously adjusting physiological processes relative to local environmental conditions. Owing to their limited heat and fat storage capacities, small animals, such as songbirds, must rapidly modulate their metabolism in response to weather extremes and changing seasons to ensure survival. As a consequence of previous technical limitations, most of our existing knowledge about how animals respond to changing environmental conditions comes from laboratory studies or field studies over short temporal scales. Here, we expanded beyond previous studies by outfitting 71 free-ranging Eurasian blackbirds ( Turdus merula ) with novel heart rate and body temperature loggers coupled with radio transmitters, and followed individuals in the wild from autumn to spring. Across seasons, blackbirds thermoconformed at night, i.e. their body temperature decreased with decreasing ambient temperature, but not so during daytime. By contrast, during all seasons blackbirds increased their heart rate when ambient temperatures became colder. However, the temperature setpoint at which heart rate was increased differed between seasons and between day and night. In our study, blackbirds showed an overall seasonal reduction in mean heart rate of 108 beats min −1 (21%) as well as a 1.2°C decrease in nighttime body temperature. Episodes of hypometabolism during cold periods likely allow the birds to save energy and, thus, help offset the increased energetic costs during the winter when also confronted with lower resource availability. Our data highlight that, similar to larger non-hibernating mammals and birds, small passerine birds such as Eurasian blackbirds not only adjust their heart rate and body temperature on daily timescales, but also exhibit pronounced seasonal changes in both that are modulated by local environmental conditions such as temperature. This article is part of the theme issue ‘Measuring physiology in free-living animals (Part I)’.
Background Many birds species range over vast geographic regions and migrate seasonally between their breeding and overwintering sites. Deciding when to depart for migration is one of the most consequential life-history decisions an individual may make. However, it is still not fully understood which environmental cues are used to time the onset of migration and to what extent their relative importance differs across a range of migratory strategies. We focus on departure decisions of a songbird, the Eurasian blackbird Turdus merula, in which selected Russian and Polish populations are full migrants which travel relatively long-distances, whereas Finnish and German populations exhibit partial migration with shorter migration distances. Methods We used telemetry data from the four populations (610 individuals) to determine which environmental cues individuals from each population use to initiate their autumn migration. Results When departing, individuals in all populations selected nights with high atmospheric pressure and minimal cloud cover. Fully migratory populations departed earlier in autumn, at longer day length, at higher ambient temperatures, and during nights with higher relative atmospheric pressure and more supportive winds than partial migrants; however, they did not depart in higher synchrony. Thus, while all studied populations used the same environmental cues, they used population-specific and locally tuned thresholds to determine the day of departure. Conclusions Our data support the idea that migratory timing is controlled by general, species-wide mechanisms, but fine-tuned thresholds in response to local conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.