The subject matter of the article is pseudo-random number generators. Random numbers play the important role in cryptography. Using not secure pseudo-random number generators is a very common weakness. It is also a fundamental resource in science and engineering. There are algorithmically generated numbers that are similar to random distributions but are not random, called pseudo-random number generators. In many cases the tasks to be solved are based on the unpredictability of random numbers, which cannot be guaranteed in the case of pseudo-random number generators, true randomness is required. In such situations, we use real random number generators whose source of randomness is unpredictable random events. Quantum Random Number Generators (QRNGs) generate real random numbers based on the inherent randomness of quantum measurements. The goal is to develop a mathematical model of the generator, which generates fast random numbers at a lower cost. At the same time, a high level of randomness is essential. Through quantum mechanics, we can obtain true numbers using the unpredictable behavior of a photon, which is the basis of many modern cryptographic protocols. It is essential to trust cryptographic random number generators to generate only true random numbers. This is why certification methods are needed which will check both the operation of the device and the quality of the random bits generated. The goal of the research is also to develop the model of a hybrid semi self-testing certification method for quantum random number generators (QRNG). The tasks to be solved are to create the mathematical model of a random number generator, which generates the fast random numbers at a lower cost. To create the mathematical model of a hybrid semi self-testing certification method for quantum random number generators. To integrate a hybrid semi self-testing certification method to the hybrid random number generator. the methods used are mathematical optimization and simulation. The following results were obtained: we present the improved hybrid quantum random number generator, which is based on QRNG, which uses the time of arrival of photons. The model of a hybrid semi self-testing certification method for quantum random number generators (QRNG) is offered in the paper. This method combines different types of certification approaches and is rather secure and efficient. Finally, the hybrid certification method is integrated into the model of the new quantum random number generator. Conclusions. The scientific novelty of the results obtained is as follows: 1. The hybrid quantum random number generator is offered, which is based on QRNG, which uses the time of the arrival of photons. It uses the simple version of the detectors with few requirements. The hybrid QRNG produces more than one random bit per the detection of each photon. It is rather efficient and has a high level of randomness. 2. The hybrid semi self-testing certification method for quantum random number generators (QRNG) is offered. The Self-testing, as well as device-independent quantum random number generation methods, are analyzed. The advantages and disadvantages of both methods are identified. Based on the result the hybrid method is offered. 3. The hybrid semi self-testing certification method for quantum random number generators is integrated into the offered model of the quantum random number generator. The paper analyzes its security and efficiency. The paper offers to use the new random number generator in the crypto-schemes.
Random numbers have many uses, but finding true randomness is incredibly difficult. Therefore, quantum mechanics is used, using the essentially unpredictable behavior of a photon, to generate truly random numbers that form the basis of many modern cryptographic protocols. It is essential to trust cryptographic random number generators to generate only true random numbers. This is why certification methods are needed which will check both the performance of our device and the quality of the random bits generated. Self-testing as well as device independent quantum random number generation methods are analyzed in the paper. The advantages and disadvantages of both methods are identified. The model of a novel semi self-testing certification method for quantum random number generators is offered in the paper. This method combines different types of certification approaches and is rather secure and efficient. The method is very important for computer science, because it combines the best features from selftesting and device independent methods. It can be used, when the random numbers’ entropy depends on the device and when it does not. In the related researches, these approaches are offered to be used separately, depending on the random number generator. The offered novel certification technology can be properly used, when the device is compromised or spoiled. The technology can successfully detect unintended irregularities, operational problems, abnormalities and problems in the randomization process. The offered mythology assists to eliminate problems related to physical devices. The offered system has the higher certification randomness security and is faster than self-testing approaches. The method is rather efficient because it implements the different certification approaches in the parallel threads. The offered techniques make the offered research must more efficient than the other existing approaches. The corresponding programming simulation is implemented by means of the simulation techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.