This study attempts to examine the role of sustainable Human Resource Management (HRM) practices on job performance and encompasses training as a moderator variable to further evaluate the association among HRM practices and employee’s job performance.The study seeks to measure the effect of selection, participation, and employee empowerment on job performance in the publicly owned universities of Pakistan. The descriptive survey research design was utilized for this study. The target population was the entire teaching staff of two publicly owned universities (namely “The University of Agriculture Peshawar” and “Hazara University Mansehra” Pakistan). By using a convenient sampling technique, 130 sample participants were selected from the target population. The reliability scales were tallied by using Cronbach’s Alpha. The findings of the study are gleaned by using regression to investigate the role of HRM practices in job performance and whether training moderated the association between HRM practices and employee performance. Through Statistical Package of Social Science (SPSS), Hayes process was used regarding the moderation effect of training between HRM practices and job performance. The main results of regression analysis validate that HRM practices, such as selection, participation, and employee empowerment, have a significant and positive effect on employee job performance. Specifically, the study suggests that training significantly moderates the effect of HRM practices on the performance of employees and that sustainability of HRM practices has a great impact on job performance. Based on the outcomes the study confirms that the proposed hypotheses are statistically significant. Furthermore, directions for future research are offered.
Energy efficiency and environmental issues have been largely neglected in logistics. In a traditional supply chain, the objective of improving energy efficiency is targeted at the level of single parts of the value making chain. Industry 4.0 technologies make it possible to build hyperconnected logistic solutions, where the objective of decreasing energy consumption and economic footprint is targeted at the global level. The problems of energy efficiency are especially relevant in first mile and last mile delivery logistics, where deliveries are composed of individual orders and each order must be picked up and delivered at different locations. Within the frame of this paper, the author describes a real-time scheduling optimization model focusing on energy efficiency of the operation. After a systematic literature review, this paper introduces a mathematical model of last mile delivery problems including scheduling and assignment problems. The objective of the model is to determine the optimal assignment and scheduling for each order so as to minimize energy consumption, which allows to improve energy efficiency. Next, a black hole optimization-based heuristic is described, whose performance is validated with different benchmark functions. The scenario analysis validates the model and evaluates its performance to increase energy efficiency in last mile logistics.
The accelerated movement of people towards cities led to the fact that the world’s urban population is now growing by 60-million persons per year. The increased number of cities’ population has a significant impact on the produced volume of household waste, which must be collected and recycled in time. The collection of household waste, especially in downtown areas, has a wide range of challenges; the collection system must be reliable, flexible, cost efficient, and green. Within the frame of this paper, the authors describe the application possibilities of Industry 4.0 technologies in waste collection solutions and the optimization potential in their processes. After a systematic literature review, this paper introduces the waste collection process of downtowns as a cyber-physical system. A mathematical model of this waste collection process is described, which incorporates routing, assignment, and scheduling problems. The objectives of the model are the followings: (1) optimal assignment of waste sources to garbage trucks; (2) scheduling of the waste collection through routing of each garbage truck to minimize the total operation cost, increase reliability while comprehensive environmental indicators that have great impact on public health are to be taken into consideration. Next, a binary bat algorithm is described, whose performance is validated with different benchmark functions. The scenario analysis validates the model and then evaluates its performance to increase the cost-efficiency and warrant environmental awareness of waste collection process.
Supply chain management applies more and more Industry 4.0 innovations to increase their availability, elasticity, sustainability, and efficiency. In interconnected logistics networks, operations are integrated from suppliers through 3rd party logistics providers to customers. There are different delivery models depending on the time and cost. In the last few years, a wide range of customers is willing to pay an extra fee for the same delivery or instant delivery. This fact led to the increased importance of the optimized design and control of first mile/last mile (FMLM) delivery solutions. Cyberphysical system-based service innovations make it possible to enhance the productivity of FMLM delivery in the big data environment. The design and operation problems can be described as NP-hard optimization problems. These problems can be solved using sophisticated models and methods based on heuristic and metaheuristic algorithms. This research proposes an integrated supply model of FMLM delivery. After a careful literature review, this paper introduces a mathematical model to formulate the problem of realtime smart scheduling of FMLM delivery. The integrated model includes the assignment of first mile and last mile delivery tasks to the available resources and the optimization of operations costs, while constraints like capacity, time window, and availability are taken into consideration. Next, a black hole optimization-(BHO-) based algorithm dealing with a multiobjective supply chain model is presented. The sensitivity of the enhanced algorithm is tested with benchmark functions. Numerical results with different datasets demonstrate the efficiency of the proposed model and validate the usage of Industry 4.0 inventions in FMLM delivery.
In the context of Industry 4.0, the matrix production concept represents revolutionary solutions from a technological and logistics point of view. In a matrix production system, flexible, configurable production and assembly cells are arranged in a grid layout, and the in-plant supply is based on autonomous vehicles. Adaptable and flexible material handling solutions are required to perform the dynamically changing supply-demands of standardized and categorized manufacturing and assembly cells. Within the frame of this paper, the authors describe the in-plant supply process of matrix production and the optimization potential in these processes. After a systematic literature review, this paper introduces the structure of matrix production as a cyber-physical system focusing on logistics aspects. A mathematical model of this in-plant supply process is described including extended and real-time optimization from routing, assignment, and scheduling points of view. The optimization problem described in the model is an NP-hard problem. There are no known efficient analytical methods to find the best solution for this kind of problem; therefore, we use heuristics to find a suitable solution for the above-described problem. Next, a sequential black hole–floral pollination heuristic algorithm is described. The scenario analysis, which focuses on the clustering and routing aspects of supply demands in a matrix production system, validates the model and evaluates its performance to increase cost-efficiency and warrants environmental awareness of the in-plant supply in matrix production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.