We report on the layer-by-layer (LbL) formation of TiO(2)-MWNT-TiO(2) coatings on quartz with either trititanate derived TiO(2) nanowires or Degussa P25 as the photocatalytically active material. The optimized deposition sequence is discussed in detail and the morphology of the prepared coatings is analyzed by SEM and XRD. The heterogeneous photocatalytic performance of the coatings was tested in the methyl orange oxidation reaction. The apparent first order rate constant fell in the 0.01-0.20 h(-1) range over a 2.5 × 2.5 cm(2) film depending on the type and the thickness of the titanate coating. Building a multiwall carbon nanotube layer into the middle of the layer improved the photocatalytic activity for each material for all of the studied thicknesses. P25 based films performed 2-5 times better than TiO(2) nanowire films; however, the pores in the P25 based films were largely blocked because the isotropic P25 nanoparticles form closely packed layers by themselves and even more so with the comparably sized multiwall carbon nanotubes. Therefore, films derived from titanate nanowires appear to be more suitable for use as multifunctional, photocatalytically active filtration media.
Polyacrylonitrile (PAN) solutions were deposited on quartz plates by spin coating to yield 2-3 ?m thick PAN films. The films were decomposed at 1000?C in N2 atmosphere into electrically conducting carbonaceous coatings. When the precursor solution contained cobalt (0.2 g Co-acetate per 1 g PAN) and/or multi-wall carbon nanotubes (MWCNTs, 2 mg MWCNT per 1 g PAN) the specific electrical resistance of the product film dropped from the original 492 ??cm-1 value down to 46 ??cm-1. By excluding all other possibilities we came to the conclusion that the beneficial effect of carbon nanotubes is related to their catalytic action in the final graphitization of condensed nitrogen-containing rings into graphitic nanocrystallites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.