Evolutionary processes generating biodiversity and ecological mechanisms maintaining biodiversity seem to be diverse themselves. Conventional explanations of biodiversity such as niche differentiation, density-dependent predation pressure, or habitat heterogeneity seem satisfactory to explain diversity in communities of macrobial organisms such as higher plants and animals. For a long time the often high diversity among microscopic organisms in seemingly uniform environments, the famous ''paradox of the plankton,'' has been difficult to understand. The biodiversity in bacterial communities has been shown to be sometimes orders of magnitudes higher than the diversity of known macrobial systems. Based on a spatially explicit game theoretical model with multiply cyclic dominance structures, we suggest that antibiotic interactions within microbial communities may be very effective in maintaining diversity.
The emergence of functional replicases, acting quickly and with high accuracy, was crucial to the origin of life. Although where the first RNA molecules came from is still unknown, it is nevertheless assumed that catalytic RNA enzymes (ribozymes) with replicase function emerged at some early stage of evolution. The fidelity of copying is especially important because the mutation load limits the length of replicating templates that can be maintained by natural selection. An increase in template length is disadvantageous for a fixed digit copying fidelity, however, longer molecules are expected to be better replicases. An iteration for longer molecules with better replicase function has been suggested and analysed mathematically. Here we show that more efficient replicases can spread, provided they are adsorbed to a prebiotic mineral surface. A cellular automaton simulation reveals that copying fidelity, replicase speed and template efficiency all increase with evolution, despite the presence of molecular parasites, essentially because of reciprocal atruism ('within-species mutualism') on the surface, thus making a gradual improvement of replicase function more plausible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.