Abstract-Despite extensive research focused on enabling QoS for grid users through economic and intelligent resource provisioning, no consensus has emerged on the most promising strategies. On top of intrinsically challenging problems, the complexity and size of data has so far drastically limited the number of comparative experiments. An alternative to experimenting on real, large, and complex data, is to look for well-founded and parsimonious representations. This study is based on exhaustive information about the gLite-monitored jobs from the EGEE grid, representative of a significant fraction of e-science computing activity in Europe. Our main contributions are twofold. First we found that workload models for this grid can consistently be discovered from the real data, and that limiting the range of models to piecewise linear time series models is sufficiently powerful. Second, we present a bootstrapping strategy for building more robust models from the limited samples at hand.
In subset ranking, the goal is to learn a ranking function that approximates a gold standard partial ordering of a set of objects (in our case, a set of documents retrieved for the same query). The partial ordering is given by relevance labels representing the relevance of documents with respect to the query on an absolute scale. Our approach consists of three simple steps. First, we train standard multi-class classifiers (AdaBoost.MH and multi-class SVM) to discriminate between the relevance labels. Second, the posteriors of multi-class classifiers are calibrated using probabilistic and regression losses in order to estimate the Bayes-scoring function which optimizes the Normalized Discounted Cumulative Gain (NDCG). In the third step, instead of selecting the best multi-class hyperparameters and the best calibration, we mix all the learned models in a simple ensemble scheme. Mach Learn (2013) 93:261-292 Our extensive experimental study is itself a substantial contribution. We compare most of the existing learning-to-rank techniques on all of the available large-scale benchmark data sets using a standardized implementation of the NDCG score. We show that our approach is competitive with conceptually more complex listwise and pairwise methods, and clearly outperforms them as the data size grows. As a technical contribution, we clarify some of the confusing results related to the ambiguities of the evaluation tools, and propose guidelines for future studies.
Abstract. In subset ranking, the goal is to learn a ranking function that approximates a gold standard partial ordering of a set of objects (in our case, relevance labels of a set of documents retrieved for the same query). In this paper we introduce a learning to rank approach to subset ranking based on multi-class classification. Our technique can be summarized in three major steps. First, a multi-class classification model (AdaBoost.MH) is trained to predict the relevance label of each object. Second, the trained model is calibrated using various calibration techniques to obtain diverse class probability estimates. Finally, the Bayes-scoring function (which optimizes the popular Information Retrieval performance measure NDCG), is approximated through mixing these estimates into an ultimate scoring function. An important novelty of our approach is that many different methods are applied to estimate the same probability distribution, and all these hypotheses are combined into an improved model. It is well known that mixing different conditional distributions according to a prior is usually more efficient than selecting one "optimal" distribution. Accordingly, using all the calibration techniques, our approach does not require the estimation of the best suited calibration method and is therefore less prone to overfitting. In an experimental study, our method outperformed many standard ranking algorithms on the LETOR benchmark datasets, most of which are based on significantly more complex learning to rank algorithms than ours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.