Soil plays a central role in food safety as it determines the possible composition of food and feed at the root of the food chain. However, the quality of soil resources as defined by their potential impact on human health by propagation of harmful elements through the food chain has been poorly studied in Europe due to the lack of data of adequate detail and reliability. The European Union's first harmonized topsoil sampling and coherent analytical procedure produced trace element measurements from approximately 22,000 locations. This unique collection of information enables a reliable overview of the concentration of heavy metals, also referred to as metal(loid)s including As, Cd, Cr, Cu, Hg, Pb, Zn, Sb. Co, and Ni. In this article we propose that in some cases (e.g. Hg and Cd) the high concentrations of soil heavy metal attributed to human activity can be detected at a regional level. While the immense majority of European agricultural land can be considered adequately safe for food production, an estimated 6.24% or 137,000km(2) needs local assessment and eventual remediation action.
Soil contamination is one of the greatest concerns among the threats to soil resources in Europe and globally. Despite of its importance there was only very course scale (1/5000km(2)) data available on soil heavy metal concentrations prior to the LUCAS topsoil survey, which had a sampling density of 200km(2). Based on the results of the LUCAS sampling and auxiliary information detailed and up-to-date maps of heavy metals (As, Cd, Cr, Cu, Hg, Pb, Zn, Sb, Co and Ni) in the topsoil of the European Union were produced. Using the maps of heavy metal concentration in topsoil we made a spatial prediction of areas where local assessment is suggested to monitor and eventually control the potential threat from heavy metals. Most of the examined elements remain under the corresponding threshold values in the majority of the land of the EU. However, one or more of the elements exceed the applied threshold concentration on 1.2Mkm(2), which is 28.3% of the total surface area of the EU. While natural backgrounds might be the reason for high concentrations on large proportion of the affected soils, historical and recent industrial and mining areas show elevated concentrations (predominantly of As, Cd, Pb and Hg) too, indicating the magnitude of anthropogenic effect on soil quality in Europe.
The adoption of the 17 sustainable development goals (SDGs) listed in the 2030 Agenda for Sustainable Development by the United Nations urged the scientific community to generate information for planning and monitoring socioeconomic development and the underlying environmental compartments. SDGs 2, 3, 6, 11, 13, 14, and 15 have targets which commend direct consideration of soil resources. There are five groups of SDGs and assigned SDG indicators where soil plays a central role. Frameworks of soil-related sustainable development goals and related indicators which can be monitored in current monitoring schemes are proposed.
This study identifies factors affecting the fate of buried objects in soil and develops a method for assessing where preservation of different materials and stratigraphic evidence is more or less likely in the landscape. The results inform the extent of the cultural service that soil supports by preserving artefacts from and information about past societies. They are also relevant to predicting the state of existing and planned buried infrastructure and the persistence of materials spread on land. Soils are variable and preserve different materials and stratigraphic evidence differently. This study identifies the material and soil properties that affect preservation and relates these to soil types; it assesses their preservation capacities for bones, teeth and shells, organic materials, metals (Au, Ag, Cu, Fe, Pb and bronze), ceramics, glass and stratigraphic evidence. Preservation of Au, Pb and ceramics, glass and phytoliths is good in most soils but degradation rates of other materials (e.g. Fe and organic materials) is strongly influenced by soil type. A method is proposed for using data on the distribution of soil types to map the variable preservation capacities of soil for different materials. This is applied at a continental scale across the EU for bones, teeth and shells, organic materials, metals (Cu, bronze and Fe) and stratigraphic evidence. The maps produced demonstrate how soil provides an extensive but variable preservation of buried objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.