Lead halide perovskites (LHPs) have emerged as perspective materials for light harvesting, due to their tunable band gap and optoelectronic properties. Photocatalytic and photoelectrochemical (PEC) studies, employing LHP/liquid junctions, are evolving, where sacrificial reagents are often used. In this study, we found that a frequently applied electron scavenger (TCNQ) has dual roles: while it leads to rapid electron transfer from the electrode to TCNQ, enhancing the PEC performance, it also accelerates the decomposition of the CsPbBr 3 photoelectrode. The instability of the films is caused by the TCNQ-mediated halide exchange between the dichloromethane solvent and the LHP film, during PEC operation. Charge transfer and halide exchange pathways were proposed on the basis of in situ spectroelectrochemical and ex situ surface characterization methods, also providing guidance on planning PEC experiments with such systems.
Ternary copper halide pseudo‐perovskites are in the forefront of research as potential active materials in light emission applications. The optoelectronic properties of these compounds can be fine‐tuned by the preparation of mixed‐halide compositions. After irradiation, self‐trapped excitonic states are formed in these materials. However, the emission from these self‐trapped states is not yet fully understood. In this work, mixed‐halide Cs3Cu2X5 films (where X: I and/or Br) are prepared by a simple spray‐coating method. Using ultraviolet photoelectron spectroscopy, the changes in optoelectronic properties are linked to the electronic structure of these materials. It is revealed that the incorporation of bromide into the lattice makes the emission process of these materials more vulnerable to trap states. By combining the different spectroscopic characterization techniques, the exact band structure of these compounds is determined, and the different processes are translated to the absolute energy scale. As an alternative excitation mechanism of self‐trapped states, α‐particles are used to induce radioluminescence response. The Cs3Cu2X5 films exhibit composite decay patterns, most likely attributed to a multitude of different trap state‐mediated recombination processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.