Objectives The main objective of present review is to explore and evaluate the effectiveness of recently developed methods to improve the bioavailability of orally administered biopharmaceutical drugs. Methods A systematic search of sciencedirect, tandfonline and Google Scholar databases based on various sets of keywords was performed. All results were evaluated based on their abstracts, and irrelevant studies were neglected during further evaluation. Results At present, biopharmaceuticals are used as injectable therapies as they are not absorbed adequately from the different routes of drug administration, particularly the oral one. Their insufficient absorption is attributed to their high molecular weight, degradation by proteolytic enzymes, high hydrophilicity and rigidity of the absorptive tissues. From industrial aspect incorporation of enzyme inhibitors (EIs) and permeation enhancers (PEs) and mucoadhesive polymers into conventional dosage forms may be the easiest way of formulation of orally administered macromolecular drugs, but the effectiveness of protection and absorption enhancement here is the most questionable. Conjugation may be problematic from regulatory aspect. Encapsulation into lipid-based vesicles sufficiently protects the incorporated macromolecule and improves intestinal uptake but have considerable stability issues. In contrast, polymeric nanocarriers may provide good stability but provides lower internalization efficacy in comparison with the lipid-based carriers. Conclusion It can be concluded that the combination of the advantages of mucoadhesive polymeric and lid-based carriers in hybrid lipid/polymer nanoparticles may result in improved absorption and might represent a potential means for the oral administration of therapeutic proteins in the near future.
Purpose
To design and stabilize Liraglutide loaded poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) proper for oral administration.
Methods
PLGA NPs were prepared by means of double emulsion solvent evaporation method and optimized by applying 7-factor 2-level Plackett-Burman screening design.
Results
Spherical shaped NPs with homogeneous distribution, 188.95 nm particle size and 51.81% encapsulation efficiency were obtained. Liraglutide was successfully entrapped in the NPs while maintaining its native amorphous nature, and its structural integrity as well.
Conclusion
Lira-PLGA NPs with the required Critical Quality Attributes (CQAs) were successfully designed by implementing a 7-factor 8-run Plackett Burman design into the extended Quality by Design (QbD) model, to elucidate the effect of formulation and process variables on the particle size, size-distribution, encapsulation efficiency and surface charge. As the developed nanoparticles maintained the native structure of the active pharmaceutical ingredient (API), they are promising compositions for the further development for the oral delivery of Lira.
Graphical Abstract
Electronic supplementary material
The online version of this article (10.1007/s11095-019-2620-9) contains supplementary material, which is available to authorized users.
The present work aims to reveal the pharma-industrial benefits of the use of hydrothermally synthesised titanate nanotube (TNT) carriers in the manufacturing of nano-sized active pharmaceutical ingredients (APIs). Based on this purpose, the compressibility and compactibility of various APIs (diltiazem hydrochloride, diclofenac sodium, atenolol and hydrochlorothiazide) and their 1:1 composites formed with TNTs were investigated in a comparative study, using a Lloyd 6000R uniaxial press instrumented with a force gauge and a linear variable differential transformer extensometer. The tablet compression was performed without the use of any excipients, thus providing the precise energetic characterisation of the materials’ behaviour under pressure. In addition to the powder functionality test, the post-compressional properties of the tablets were also determined and evaluated. The results of the energetic analysis demonstrated that the use of TNTs as drug carriers is beneficial in every step of the tabletting process: besides providing better flowability and more favourable particle rearrangement, it highly decreases the elastic recovery of the APIs and results in ideal plastic deformation. Moreover, the post-compressional properties of the TNT–API composites were found to be exceptional (e.g., great tablet hardness and tensile strength), affirming the above results and proving the potential in the use of TNT carriers for drug manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.