Highlights d Light-sensitive, multilayered human retinal organoids with functional synapses d 285,441 transcriptomes from light-responsive human retinas and retinal organoids d Organoid cell types converge to adult peripheral retinal cell types d Linking retinal diseases to human retinal and retinal organoid cell types
Gradual changes in the sensory environment can lead to abrupt changes in brain computations and perception. However, mechanistic understanding of the mediating microcircuits is missing. By sliding through light levels from starlight to daylight, we identify retinal ganglion cell types in the mouse that abruptly and reversibly switch the weighting of center and surround interactions in their receptive field around cone threshold. Two-photon-targeted recordings and genetic and viral tracing experiments revealed that the circuit element responsible for the switch is a large inhibitory neuron that provides direct inhibition to ganglion cells. Our experiments suggest that weak excitatory input via electrical synapses together with the spiking threshold in inhibitory cells act as a switch. We also reveal a switch-like component in the spatial integration properties of human vision at cone threshold. This work demonstrates that circuits in the retina can quickly and reversibly switch between two distinct states, implementing distinct perceptual regimes at different light levels.
The outer segments of cones serve as light detectors for daylight color vision, and their dysfunction leads to human blindness conditions. We show that the cone-specific disruption of DGCR8 in adult mice led to the loss of miRNAs and the loss of outer segments, resulting in photoreceptors with significantly reduced light responses. However, the number of cones remained unchanged. The loss of the outer segments occurred gradually over 1 month, and during this time the genetic signature of cones decreased. Reexpression of the sensory-cell-specific miR-182 and miR-183 prevented outer segment loss. These miRNAs were also necessary and sufficient for the formation of inner segments, connecting cilia and short outer segments, as well as light responses in stem-cell-derived retinal cultures. Our results show that miR-182- and miR-183-regulated pathways are necessary for cone outer segment maintenance in vivo and functional outer segment formation in vitro.
Targeting genes to specific neuronal or glial cell types is valuable both for understanding and for repairing brain circuits. Adeno-associated viral vectors (AAVs) are frequently used for gene delivery, but targeting expression to specific cell types is a challenge. We created a library of 230 AAVs, each with a different synthetic promoter designed using four independent strategies. We show that ~11% of these AAVs specifically target expression to neuronal and glial cell types in the mouse retina, mouse brain, non-human primate retina in vivo, and in the human retina in vitro. We demonstrate applications for recording, stimulation, and molecular characterization, as well as the intersectional and combinatorial labeling of cell types. These resources and approaches allow economic, fast, and efficient cell-type targeting in a variety of species, both for fundamental science and for gene therapy.Despite the central importance for both basic and translational research, most current technologies available for cell-type-targeting rely on transgenic animals, which limits their applicability. Either the genetic tool that senses or modulates brain function, or the enzyme, such as Cre recombinase, that allows the genetic tool to be conditionally expressed, is expressed from the animal's genome. The inclusion of a transgenic component in the cell-type-targeting strategy excludes its use in therapy for humans, limits its range of application in pre-clinical, non-human primate research, and complicates its use in model organisms such as mice. The development of transgenic non-human primates and mice is costly and slow, especially since cell-type targeting is often applied in the context of other genetic manipulations, such as double or triple gene knockouts, or when targeting different cell types with different tools.Viral vectors for cell-type-targeting may overcome such limitations. AAVs are the most frequently used vectors in both basic research and gene therapy, as they are safe for use in all tested species, including humans and non-human primates, and their production is simple, cheap, and fast (Planul and Dalkara, 2017). They have three important components: the capsid for cell entry, the promoter that drives transgene expression, and the gene of interest to be expressed in the transduced cells, and they drive expression episomally (Duan et al., 1998; Penaud-Budloo et al., 2008). Futhermore, many genetic tools are small enough to fit into AAVs, different AAVs can be injected together, and synthetic AAV capsids allow brain-wide delivery (Deverman et al., 2016).Cell-type-targeting by AAVs could be achieved by engineering the capsid and/or by using specific promoters. Capsid protein mutations can be used to tune the efficacy of
Fluorescent proteins are commonly used to label cells across organisms, but the unmodified forms cannot control biological activities. Using GFP-binding proteins derived from Camelid antibodies, we co-opted GFP as a scaffold for inducing formation of biologically active complexes, developing a library of hybrid transcription factors that control gene expression only in the presence of GFP or its derivatives. The modular design allows for variation in key properties such as DNA specificity, transcriptional potency, and drug dependency. Production of GFP controlled cell-specific gene expression and facilitated functional perturbations in the mouse retina and brain. Further, retrofitting existing transgenic GFP mouse and zebrafish lines for GFP-dependent transcription enabled applications such as optogenetic probing of neural circuits. This work establishes GFP as a multifunctional scaffold and opens the door to selective manipulation of diverse GFP-labeled cells across transgenic lines. This approach may also be extended to exploit other intracellular products as cell-specific scaffolds in multicellular organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.